岩土力学 ›› 2022, Vol. 43 ›› Issue (2): 423-431.doi: 10.16285/j.rsm.2021.1270

• 基础理论与实验研究 • 上一篇    下一篇

考虑非等温环境下污染物在黏土中的运移解析模型

邱金伟1,权全2,刘军1,童军1,胡波1   

  1. 1. 长江科学院 水利部岩土力学与工程重点实验室,湖北 武汉 430010;2. 安徽省引江济淮集团有限公司,安徽 合肥 230000
  • 收稿日期:2021-08-09 修回日期:2021-12-15 出版日期:2022-02-11 发布日期:2022-02-22
  • 作者简介:邱金伟,男,1991年生,博士,助理研究员,主要从事环境岩土工程方面的研究。
  • 基金资助:
    安徽省引江济淮集团有限公司科技项目(No. YJJH-ZT-ZX-20191031216);国家自然科学基金面上项目(No. 51709017)

Analytical solutions of contaminant transport in clay liner system under non-isothermal condition

QIU Jin-wei1, QUAN Quan2, LIU Jun1, TONG Jun1, HU Bo1   

  1. 1. Key Laboratory of Geotechnical Mechanics and Engineering of Ministry of Water Resources, Changjiang River Scientific Research Institute, Wuhan, Hubei 430010, China; 2. Anhui Provincial Group Limited for Yangtze-to-Huaihe Water Diversion, Hefei, Anhui 230000, China
  • Received:2021-08-09 Revised:2021-12-15 Online:2022-02-11 Published:2022-02-22
  • Supported by:
    This work was supported by the Technology Project of Anhui Provincial Group Limited for Yangtze-to-Huaihe Water Diversion (YJJH-ZT-ZX-20191031216) and the General Program of National Natural Science Foundation of China (51709017).

摘要: 利用广义积分变换法推导了非等温条件下污染物在压实黏土衬垫中的运移解析解。所提出的解析解考虑了分子扩散、对流、吸附和热扩散的耦合效应,并考虑了压实黏土的渗透系数、分布系数和有效扩散系数3个参数随温度的变化。通过与热扩散试验结果、已有的解析解和基于COMSOL软件的数值模型的对比,验证了所提出的解析解。利用经过验证的解析解,研究了非等温环境以及压实黏土的渗透系数、有效扩散系数和分布系数3个参数随温度的变化对甲苯在压实黏土衬垫系统中迁移的影响。结果表明,非等温环境以及压实黏土的渗透系数、有效扩散系数和分布系数随温度的变化均对甲苯在压实黏土衬垫中迁移有着显著的影响。不考虑非等温环境的影响将极大低估污染物的溢出量和污染物的击穿时间。既有解析解忽略压实黏土的渗透系数和有效扩散系数随温度的变化会极大低估甲苯的流出速率,而忽略压实黏土分布系数随温度的变化会极大高估甲苯击穿衬垫系统的时间和达到稳态的时间。所提出的解析解能够考虑热扩散作用,同时考虑了压实黏土的渗透系数、分布系数和有效扩散系数3个参数随温度的变化,较既有解析解更贴近工程实际,能够为压实黏土衬垫系统的设计和服役性能评价提供指导和借鉴。

关键词: 解析解, 非等温条件, 压实黏土衬垫, 污染物运移

Abstract: Analytical solutions of contaminant transport in a compacted clay liner (CCL) under non-isothermal condition are derived through the generalized integral transform technique. The proposed analytical solutions account for the coupling effects of molecular diffusion, advection, sorption and thermal diffusion. In addition, the variations of CCL permeability coefficient, CCL distribution coefficient and CCL effective diffusion coefficient with temperature are also considered in the analytical solutions. The proposed analytical solutions are successfully validated against the experimental results of thermal diffusion tests, the analytical solutions available in previous studies and COMSOL numerical results, respectively. Then the effects of non-isothermal condition, permeability coefficient, effective diffusion coefficient and distribution coefficient of CCL on the transport of benzene in CCL system were studied through the verified analytical solutions. The results indicate that the non-isothermal condition and the variations of permeability coefficient, effective diffusion coefficient and distribution coefficient of CCL with temperature all have significant effects on benzene transport in the CCL system. The mass flux and breakthrough time of contaminant can be substantially underestimated without considering the effect of non-isothermal condition. The previous analytical solutions that neglect the variations of CCL permeability coefficient and CCL effective diffusion coefficient with temperature can substantially underestimate the benzene outflow rate, whereas neglecting the variation of CCL distribution coefficient with temperature can substantially overestimate the cost time of benzene to penetrate the liner system and reach steady-state. The proposed analytical solutions that consider the effects of thermal diffusion as well as the variations of CCL permeability coefficient, CCL distribution coefficient and CCL effective diffusion coefficient with temperature are more suitable for the engineering practice. It can be adopted to improve the design scheme and the service performance evaluation of CCL system.

Key words: analytical solution, non-isothermal condition, compacted clay liner, contaminant transport

中图分类号: 

  • TU 43
[1] 杨涛, 吉映竹, . 变荷载下长排水体-短不排水桩 复合地基固结解析解[J]. 岩土力学, 2022, 43(5): 1187-1196.
[2] 李镜培, 刘耕云, 周攀, . 基于相似性原理超固结土不排水扩张半解析解[J]. 岩土力学, 2022, 43(3): 582-590.
[3] 赵爽, 余俊, 刘新源, 胡钟伟. 悬臂式刚性墙动力响应解析研究[J]. 岩土力学, 2022, 43(1): 152-159.
[4] 王祖贤, 施成华, 刘建文. 非对称推力作用下盾构隧道附加响应的解析解[J]. 岩土力学, 2021, 42(9): 2449-2460.
[5] 卢一为, 丁选明, 刘汉龙, 郑长杰, . 均匀黏弹性地基中X形桩纵向振动 响应简化解析方法[J]. 岩土力学, 2021, 42(9): 2472-2479.
[6] 仇超, 李传勋, 李红军, . 单级等速加载下高压缩性软土 非线性大应变固结解析解[J]. 岩土力学, 2021, 42(8): 2195-2206.
[7] 林伟岸, 江文豪, 詹良通. 考虑真空加载过程及堆载随时间变化下 砂井地基的普遍固结解析解[J]. 岩土力学, 2021, 42(7): 1828-1838.
[8] 秦爱芳, 江良华, 许薇芳, 梅国雄, . 连续渗透边界下非饱和土竖井地基固结解析解[J]. 岩土力学, 2021, 42(5): 1345-1354.
[9] 凌道盛, 赵天浩, 钮家军, 朱松, 单振东, . 混合非齐次边界下非饱和土一维固结解析解[J]. 岩土力学, 2021, 42(4): 883-891.
[10] 周凤玺, 周志雄, 柳鸿博, . 非均匀地基与均匀地基解答之间的相似关系: 弹性波速[J]. 岩土力学, 2021, 42(4): 892-898.
[11] 刘建, 乔兰, 李庆文, 李远, 赵国彦, . 分布载荷加载下中心直裂纹巴西圆盘的 断裂参数研究[J]. 岩土力学, 2021, 42(11): 2987-2996.
[12] 陈余, 李传勋, 冯翠霞, . 变荷载下考虑半透水边界和起始水力坡降的 软土一维固结解析解[J]. 岩土力学, 2021, 42(11): 3008-3016.
[13] 朱赛男, 李伟华, LEE Vincent W, 赵成刚, . 平面P1波斜入射下海底洞室地震响应解析分析[J]. 岩土力学, 2021, 42(1): 93-103.
[14] 黄朝煊, 袁文喜, 胡国杰, . 成层软土地基预固结处理后桩基水平 承载力估算方法[J]. 岩土力学, 2021, 42(1): 113-124.
[15] 冯庆高, 蔡兵华, 冯晓腊, 袁祥, . 侧向有限越流承压含水层中非完整井非 稳定流模型及解析解[J]. 岩土力学, 2021, 42(1): 168-176.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .