岩土力学 ›› 2022, Vol. 43 ›› Issue (2): 432-442.doi: 10.16285/j.rsm.2021.1474

• 基础理论与实验研究 • 上一篇    下一篇

压实度对铁盐稳定化砷、锑污染土特性 的影响及机制研究

周实际1, 2, 3,杜延军1, 2,倪浩1, 2,孙慧洋1, 2,李江山3,杨玉玲1, 2, 3   

  1. 1. 东南大学 岩土工程研究所,江苏 南京 210096;2. 东南大学 江苏省城市地下工程与环境安全重点实验室,江苏 南京 210096; 3. 中国科学院武汉岩土力学研究所 岩土力学与工程国家重点实验室,湖北 武汉 430071
  • 收稿日期:2021-09-01 修回日期:2021-11-24 出版日期:2022-02-11 发布日期:2022-02-22
  • 通讯作者: 杜延军,男,1972年生,博士,教授,博导,主要从事环境岩土工程、污染地块风险管控与修复技术方面的研究。E-mail: duyanjun@seu.edu.cn E-mail:shijizhou@seu.edu.cn
  • 作者简介:周实际,男,1989年生,博士研究生,主要从事重金属污染土固化稳定化技术方面的研究
  • 基金资助:
    国家重点研发计划项目(No. 2019YFC1806000);国家自然科学基金(No. 41877248);岩土力学与工程国家重点实验室开放基金课题 (No. Z019016);江苏省研究生科研创新计划项目(No. KYCX18_0124)。

Mechanisms analysis of the effect of compaction degree on the properties of arsenic and antimony co-contaminated soil stabilized by ferric salts

ZHOU Shi-ji1, 2, 3, DU Yan-jun1, 2, NI Hao1, 2, SUN Hui-yang1, 2, LI Jiang-shan3, YANG Yu-ling1, 2, 3   

  1. 1. Institute of Geotechnical Engineering, Southeast University, Nanjing, Jiangsu 210096, China; 2. Jiangsu Key Laboratory of Urban Underground Engineering and Environmental Safety, Southeast University, Nanjing, Jiangsu 210096, China; 3. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
  • Received:2021-09-01 Revised:2021-11-24 Online:2022-02-11 Published:2022-02-22
  • Supported by:
    This work was supported by the National Key R&D Program of China (2019YFC1806000), the National Natural Science Foundation of China (41877248), the Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering (Z019016) and the Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX18_0124).

摘要: 压实度是影响铁盐稳定化砷(As)、锑(Sb)污染土环境岩土工程特性的主要因素之一。通过测定不同压实度铁盐稳定剂(PFSC)稳定化As、Sb污染土无侧限抗压强度(UCS)、As和Sb浸出浓度、渗透系数 ,研究了压实度对PFSC稳定化As、Sb污染土环境岩土工程特性的影响规律。通过工业CT扫描、X射线光电子能谱(XPS)明确了稳定化土微观孔隙特征、元素价态随压实度的变化规律。As的浸出浓度随着压实度的提高先降低后略微上升,压实度为93%时,As的浸出浓度最低;Sb的浸出浓度随着压实度的提高而降低,压实度大于85%后趋于平稳。压实度由75%提高至96%,稳定化土UCS由4.26 kPa增大至43.78 kPa。压实度由80%提高至96%,稳定化土 由1.33×10–7 m/s 降低至2.81×10–9 m/s。工业CT扫描结果表明,随着压实度的提高,土体逐渐紧实,土体孔隙度由7.54%降低至5.30%。As、Sb和Fe的XPS分析结果表明,压实度增高促使As(V)、Sb(V)和Fe(III)分别向As(III)、Sb(III)和Fe(II)转化。揭示PFSC稳定化As、Sb污染土环境岩土工程特性参数随压实度的变化规律,能够为PFSC稳定化As、Sb污染土的工程应用和施工参数优化提供理论依据。

关键词: 压实度, 砷、锑污染土, 稳定化, 无侧限抗压强度, 浸出浓度, 渗透系数

Abstract: The compaction degree is one of the main factors affecting the geo-environmental properties of arsenic (As) and antimony (Sb) co-contaminated soil stabilized by ferric salts. The effect of compaction degree on the geo-environmental properties of As and Sb co-contaminated soil stabilized by a ferric salt-based stabilizer (PFSC, polymerized ferrous sulfate-Ca(OH)2) was investigated, including unconfined compressive strength (UCS), leached concentrations of As and Sb, and hydraulic conductivity . The varied characteristics of the micro pores and the element valence in the stabilized soil with compaction degree were clarified by adopting industrial CT scanning and X-ray photoelectron spectroscopy (XPS) in the study. The leached concentration of As decreased first and then increased with the increase of compaction degree, and reached the lowest as the compaction degree was 93%. The leached concentration of Sb decreased with the increase of compaction degree, while remained constant until the compaction degree was larger than 85%. When the compaction degree increased from 75% to 96%, the UCS of the stabilized soil increased from 4.26 kPa to 43.78 kPa. As the compaction degree increased from 80% to 96%, the of the stabilized soil decreased from 1.33×10–7 m/s to 2.81×10–9 m/s. In addition, it can be observed from the industrial CT results that the porosity of stabilized soil decreased from 7.54% to 5.30% with the increase of compaction degree, hence leading to the more compactness structures of the soil. The XPS analysis of the As, Sb and Fe indicated that increasing the compaction degree of stabilized soil promoted the transformation of As(V), Sb(V), and Fe(III) to As(III), Sb(III), and Fe(II), respectively. The study mainly focused on revealing the effects of compaction degree on the geo-environmental properties of As and Sb co-contaminated soil stabilized by PFSC, which will provide a theoretical basis for the engineering application and the optimization for the operation parameters of PFSC-stabilized As and Sb co-contaminated soil.

Key words: compaction degree, arsenic and antimony co-contaminated soil, stabilization, unconfined compressive strength, leached concentration, hydraulic conductivity

中图分类号: 

  • X 53
[1] THUY Do Van, TIEP Pham Duc, HIEU Nguyen Van, THANG Pham Cao. 循环三轴试验加载频率和压实度对重塑砂土液化行为的影响[J]. 岩土力学, 2024, 45(6): 1813-1823.
[2] 张艳美, 张建, 袁彦昊, 孙文秀, . 纳米SiO2和石灰固化滨海石油污染土试验研究[J]. 岩土力学, 2023, 44(S1): 259-267.
[3] 李品良, 许强, 刘佳良, 何攀, 纪续, 陈婉琳, 彭大雷, . 盐分影响重塑黄土渗透性的微观机制试验研究[J]. 岩土力学, 2023, 44(S1): 504-512.
[4] 吴广水, 田慧会, 郝丰富, 王书齐, 杨文洲, 祝婷梅, . 基于核磁共振T2时间分布快速预测不同干密度土体的渗透系数[J]. 岩土力学, 2023, 44(S1): 513-520.
[5] 蔚立元, 杨瀚清, 王晓琳, 刘日成, 王蓥森. 循环剪切作用下三维粗糙裂隙非线性渗流特性数值模拟研究[J]. 岩土力学, 2023, 44(9): 2757-2766.
[6] 张宇, 何想, 路桦铭, 马国梁, 刘汉龙, 肖杨, . 微生物-膨润土联合矿化防渗模型试验研究[J]. 岩土力学, 2023, 44(8): 2337-2349.
[7] 冉宇玲, 柏巍, 孔令伟, 李雪梅, 樊恒辉, 杨秀娟, . 基于频域反射的细粒土压实度检测方法与误差评估[J]. 岩土力学, 2023, 44(8): 2458-2470.
[8] 文少杰, 郑文杰, 胡文乐, . 铅污染对黄土宏观持水性能和微观结构演化的影响研究[J]. 岩土力学, 2023, 44(2): 451-460.
[9] 刘宜昭, 陆阳, 刘松玉, . 重金属作用下改性水泥系隔离墙化学相容性研究[J]. 岩土力学, 2023, 44(2): 497-506.
[10] 贺桂成, 唐孟媛, 李咏梅, 李春光, 张志军, 伍玲玲. 改性黄麻纤维联合微生物胶结铀尾砂的抗渗性能试验研究[J]. 岩土力学, 2023, 44(12): 3459-3470.
[11] 郑思维, 胡明鉴, 霍玉龙, 黎宇, . 盐溶液环境下钙质砂渗透性影响因素分析[J]. 岩土力学, 2023, 44(12): 3522-3530.
[12] 刘凤云, 罗怀瑞, 万旭升, 路建国. 低温养护下电石渣激发偏高岭土基地聚物固化土力学特性及固化机制研究[J]. 岩土力学, 2023, 44(11): 3151-3164.
[13] 李丽华, 黄 畅, 李文涛, 李孜健, 叶治, . 稻壳灰−矿渣固化膨胀土力学与微观特性研究[J]. 岩土力学, 2023, 44(10): 2821-2832.
[14] 侯娟, 张金榜, 孙银玉, 孙瑞, 刘飞禹. 颗粒膨胀对膨润土复合衬垫防渗性能的影响及 介观机制分析[J]. 岩土力学, 2023, 44(10): 3039-3048.
[15] 李丽华, 方亚男, 肖衡林, 李文涛, 曹毓, 徐可, . 赤泥复合物固化/稳定化镉污染土特性研究[J]. 岩土力学, 2022, 43(S1): 193-202.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张 波,李术才,杨学英,孙国富,葛颜慧. 三维黏弹性介质人工边界研究[J]. , 2009, 30(11): 3469 -3475 .
[2] 张永乐,唐德高. 超声波层析成像在桩身结构完整性诊断中的应用[J]. , 2009, 30(11): 3548 -3552 .
[3] 岑威钧,Erich Bauer,Sendy F . Tantono. 考虑湿化效应的堆石料Gudehus-Bauer 亚塑性模型应用研究[J]. , 2009, 30(12): 3808 -3812 .
[4] 孙树林,李 方,谌 军. 掺石灰黏土电阻率试验研究[J]. , 2010, 31(1): 51 -55 .
[5] 路军富,刘 立,王明年,李培楠. 多荷载作用下层状土路基的力学特性研究[J]. , 2010, 31(1): 76 -80 .
[6] 李英勇,张顶立,张宏博,宋修广. 边坡加固中预应力锚索失效机制与失效效应研究[J]. , 2010, 31(1): 144 -150 .
[7] 张春会,于永江,岳宏亮,赵全胜. 随机分布裂隙煤岩体模型及其应用[J]. , 2010, 31(1): 265 -270 .
[8] 聂如松,冷伍明,杨 奇,岳 健,杨小礼. 路基填土对桥台桩基影响的试验与数值仿真分析[J]. , 2009, 30(9): 2862 -2868 .
[9] 蔡辉腾,李英民,欧秉松. 福州地区典型土动剪切模量与阻尼比的试验研究[J]. , 2010, 31(2): 361 -365 .
[10] 张建伟,刘汉龙. 多层地基中PCC水平荷载桩的数值解[J]. , 2010, 31(5): 1638 -1644 .