岩土力学 ›› 2021, Vol. 42 ›› Issue (5): 1245-1253.doi: 10.16285/j.rsm.2020.1271

• 基础理论与实验研究 • 上一篇    下一篇

珊瑚礁岛钙质砂细颗粒渗透运移规律研究

鞠远江1, 2,胡明鉴1,秦坤坤1, 2,宋博2,孙子晨2   

  1. 1. 中国科学院武汉岩土力学研究所 岩土力学与工程国家重点实验室,湖北 武汉 430071; 2. 中国矿业大学 资源与地球科学学院,江苏 徐州 221116
  • 收稿日期:2020-08-22 修回日期:2021-01-08 出版日期:2021-05-11 发布日期:2021-05-07
  • 通讯作者: 胡明鉴,男,1974年生,博士,研究员,主要从事海洋岩土工程与滑坡泥石流研究灾害方面的研究工作。E-mail:mjhu@whrsm.ac.cn E-mail:juyuanjiang@cumt.edu.cn
  • 作者简介:鞠远江,男,1975年生,博士,副教授,主要从事滑坡泥石流研究和地下水动力学方面的工作
  • 基金资助:
    中国科学院战略性先导科技专项(A类)子课题(No.XDA13010301)

Experimental study of filtration & fine particles migration of calcareous sand in coral reef island

JU Yuan-jiang1, 2, HU Ming-jian1, QIN Kun-kun1, 2, SONG Bo2, SUN Zi-chen2   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. School of Resources and Geosciences, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
  • Received:2020-08-22 Revised:2021-01-08 Online:2021-05-11 Published:2021-05-07
  • Supported by:
    This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA13010301).

摘要: 钙质砂因其独特的生物成因、形成环境和沉积过程,颗粒形态不规则易破碎,结构松散黏聚力弱,与常见的陆源砂存在较大差异。黏聚力弱的细粒成分可能会因渗透作用而挣脱束缚,发生迁移和再积聚,从而引起孔隙和渗透性的变化。为此,开展不同初始条件下的渗透试验和渗出液沉淀物激光粒度分析,研究钙质砂渗透过程中渗透系数的变化规律和细颗粒运移特征。试验结果显示细颗粒容易在渗流条件下流失,导致土体结构和渗透性的局部变化。级配、密实度、渗流水力梯度均对渗透过程中细粒流失产生重要影响,表现为土体粗粒含量越高,密实程度越低,渗流水力梯度越大;细颗粒越易流失且流失颗粒粒径越大,渗透系数变化幅度越大。钙质砂渗透过程中细粒流失的主要粒径范围受级配影响显著,颗粒级配中粗颗粒含量越少,则流失的颗粒粒径越小,反之亦然。

关键词: 珊瑚礁岛, 钙质砂, 渗透, 细颗粒运移, 渗透系数

Abstract: Due to its unique biogenesis, forming environment and deposition process, calcareous sand is featured with irregularity, brittleness, weak structure and low cohesion, and is considered substantially different from the common terrestrial sand deposits. Fine particles bonded with weak cohesion may be resolved by osmotic action and then migrate and reaccumulate, thus causing changes in porosity and permeability. This study has carried out filtration experiment and laser particle size analysis of exudate sediment under different initial conditions to analyze the principles of evolution, involving permeability coefficient and the characteristics of fine particle transporting during the filtration process in calcareous sand. The results show that the loss of fine particles tends to occur under the seepage condition, and that results in the local changes of soil structure and permeability. The factors including the grading, compactness and percolation hydraulic gradient play important roles in fine grain loss in the process of filtration. The results show that the higher soil coarse grain content is, the lower degree of compactness is, and the larger percolation hydraulic gradient is, which lead to the loss of fine particles easily and additionally, enlarging the size of losing particles as well as range of permeability variation. The main particle size range of fine grain loss during calcareous sand filtration is significantly affected by grading. The smaller the content of coarse grain in grading results in smaller particle size of grain loss, and vice versa.

Key words: coral islands, calcareous sand, filtration, fine particle migration, permeability coefficient

中图分类号: 

  • TU 411
[1] 詹良通, 丁兆华, 谢世平, 李育超, 何顺辉, . 竖向阻隔墙中土工复合膨润土防水毯搭接 区渗透系数测试与分析[J]. 岩土力学, 2021, 42(9): 2387-2394.
[2] 李燕, 李同录, 侯晓坤, 李华, 张杰, . 用孔隙分布曲线预测压实黄土非饱和渗透曲 线及其适用范围的探讨[J]. 岩土力学, 2021, 42(9): 2395-2404.
[3] 刘丽, 吴羊, 李旭, 赵煜鑫, . 压实度对宽级配土水力特性的影响研究[J]. 岩土力学, 2021, 42(9): 2545-2555.
[4] 周中, 张俊杰, 张称呈, 龚琛杰. 泥水盾构泥浆渗透-扩散时空演化解析模型[J]. 岩土力学, 2021, 42(8): 2185-2194.
[5] 万志辉, 戴国亮, 龚维明, 高鲁超, . 海水环境下钙质砂水泥土加固体的 微观侵蚀机制试验研究[J]. 岩土力学, 2021, 42(7): 1871-1882.
[6] 梁冰, 张柴, 刘磊, 陈锋, . 垃圾土现场渗透性测定与土水特性反演[J]. 岩土力学, 2021, 42(6): 1493-1500.
[7] 傅鹤林, 安鹏涛, 李凯, 成国文, 李鲒, 余小辉, . 围岩非均质性对隧道突涌水的影响分析[J]. 岩土力学, 2021, 42(6): 1519-1528.
[8] 鲁洋, 刘斯宏, 张勇敢, 杨蒙. 黏质土石混合体渗透特性试验及演化机制探讨[J]. 岩土力学, 2021, 42(6): 1540-1548.
[9] 饶佩森, 李丹, 孟庆山, 王新志, 付金鑫, 雷学文, . 循环荷载作用下钙质砂地基土压力分布特征研究[J]. 岩土力学, 2021, 42(6): 1579-1586.
[10] 邓申缘, 姜清辉, 商开卫, 井向阳, 熊峰, . 高温对花岗岩微结构及渗透性演化机制影响分析[J]. 岩土力学, 2021, 42(6): 1601-1611.
[11] 王英, 张虎元, 童艳梅, 周光平, . 接缝密封材料对缓冲砌块屏障封闭性能的影响[J]. 岩土力学, 2021, 42(6): 1648-1658.
[12] 秦爱芳, 江良华, 许薇芳, 梅国雄, . 连续渗透边界下非饱和土竖井地基固结解析解[J]. 岩土力学, 2021, 42(5): 1345-1354.
[13] 李跃, 徐卫亚, 易魁, 谢伟超, 张强, 孟庆祥, . 堆积体滑带土非饱和-饱和渗透特性试验研究[J]. 岩土力学, 2021, 42(5): 1355-1362.
[14] 张乐, 党发宁, 高俊, 丁九龙. 线性加载条件下考虑应力历史的饱和黏土一维非线性固结渗透试验研究[J]. 岩土力学, 2021, 42(4): 1078-1087.
[15] 董博文, 刘士雨, 俞缙, 肖杨, 蔡燕燕, 涂兵雄. 基于微生物诱导碳酸钙沉淀的天然海水 加固钙质砂效果评价[J]. 岩土力学, 2021, 42(4): 1104-1114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 魏 丽,柴寿喜,蔡宏洲,王晓燕,李 敏,石 茜. 麦秸秆加筋材料抗拉性能的实验研究[J]. , 2010, 31(1): 128 -132 .
[2] 黄庆享,张 沛,董爱菊. 浅埋煤层地表厚砂土层“拱梁”结构模型研究[J]. , 2009, 30(9): 2722 -2726 .
[3] 荆志东,刘俊新. 红层泥岩半刚性基床结构动态变形试验研究[J]. , 2010, 31(7): 2116 -2121 .
[4] 刘争宏,廖燕宏,张玉守. 罗安达砂物理力学性质初探[J]. , 2010, 31(S1): 121 -126 .
[5] 王登科,刘 建,尹光志,韦立德. 突出危险煤渗透性变化的影响因素探讨[J]. , 2010, 31(11): 3469 -3474 .
[6] 樊恒辉,高建恩,吴普特,娄宗科. 水泥基土壤固化剂固化土的物理化学作用[J]. , 2010, 31(12): 3741 -3745 .
[7] 张成平,张顶立,骆建军,王梦恕,吴介普. 地铁车站下穿既有线隧道施工中的远程监测系统[J]. , 2009, 30(6): 1861 -1866 .
[8] 王 军,曹 平,李江腾,刘业科. 降雨入渗对流变介质隧道边坡稳定性的分析[J]. , 2009, 30(7): 2158 -2162 .
[9] 张 渊,万志军,康建荣3,赵阳升. 温度、三轴应力条件下砂岩渗透率阶段特征分析[J]. , 2011, 32(3): 677 -683 .
[10] 张雪婵 ,龚晓南 ,尹序源 ,赵玉勃. 杭州庆春路过江隧道江南工作井监测分析[J]. , 2011, 32(S1): 488 -0494 .