岩土力学 ›› 2022, Vol. 43 ›› Issue (7): 1865-1876.doi: 10.16285/j.rsm.2021.1715

• 基础理论与实验研究 • 上一篇    下一篇

小净距隧道中夹岩对拉锚杆控制机制与工程应用

李然1, 2, 3,王圣涛2,张顶立3,陈平2,潘红桂2,李奥3   

  1. 1. 合肥工业大学 土木与水利工程学院,安徽 合肥 230099;2. 中铁四局集团有限公司,安徽 合肥 230023; 3. 北京交通大学 城市地下工程教育部重点实验室,北京 100044
  • 收稿日期:2021-10-11 修回日期:2022-04-26 出版日期:2022-07-26 发布日期:2022-08-04
  • 通讯作者: 陈平,男,1978年生,博士,教授级高级工程师,主要从事桥梁与隧道工程方面的研究。E-mail: 63655901@qq.com E-mail:17115300@bjtu.edu.cn
  • 作者简介:李然,男,1995年生,博士,工程师,主要从事隧道与地下工程方面的研究。
  • 基金资助:
    国家重点基础研究发展计划项目(973计划)(No. 2017YFC0805401);国家自然科学基金项目(No. 51738002);高铁联合基金重点项目(No. U1934210)。

Control mechanism and engineering application of pillar-reinforcing bolt in closely spaced tunnels

LI Ran1, 2, 3, WANG Sheng-tao2, ZHANG Ding-li3, CHEN Ping2, PAN Hong-gui2, LI Ao3   

  1. 1. College of Civil Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; 2. China Tiesiju Civil Engineering Group Co. Ltd., Hefei, Auhui 230023, China; 3. Key Laboratory for Urban Underground Engineering of Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
  • Received:2021-10-11 Revised:2022-04-26 Online:2022-07-26 Published:2022-08-04
  • Supported by:
    This work was supported by the National Program on Key Basic Research Project of China (973 Program) (2017YFC0805401), the National Natural Science Foundation of China (51738002) and the High Speed Railway and Natural Science United Foundation (U1934210).

摘要: 小净距隧道中夹岩受到两侧开挖的剧烈扰动,处于单向或双向受力的不利状态,严重影响施工安全,而预应力全长注浆对拉锚杆常用于中夹岩的主动支护。为阐明对拉锚杆的作用模式和控制机制,建立相应的力学模型和解析方法,开展实测验证,并进行参数分析和工程应用。研究表明:对拉锚杆为中夹岩提供强力水平约束,并提高岩体力学性能,发挥挤压加固作用;对拉锚杆利用剪切摩阻改善浅层围岩受力状态,同时锚固深部岩体,具有承载传力效果;对拉锚杆轴力和剪应力均由两侧向中间非线性衰减,作用范围局限于浅层中夹岩,实测结果验证了理论方法的合理性;进行了对拉锚杆的参数分析,提出了对拉锚杆临界长度、合理锚杆直径等工程建议;结合京张高铁长城站小净距隧道实践,主动增强对拉锚杆设计参数,变更后围岩压力、拱顶沉降和水平收敛的实测均值分别降低12.2%、14.1%和10.2%,保障了隧道开挖的安全。

关键词: 小净距隧道, 岩石隧道, 中夹岩, 对拉锚杆, 锚固机制

Abstract:

Due to the severe disturbance between closely spaced tunnels, the rock pillar is in the unfavorable state of single or double-direction compression, and the construction safety is seriously affected. Therefore, the prestressed and grouted pillar-reinforcing bolt is widely used to support the rock pillar actively. The mechanical models and analytical methods are established to clarify the function modes and control mechanism of the pillar-reinforcing bolt. The theoretical approach is verified by field test, the influencing parameters are analyzed, and the corresponding engineering applications are carried out. The results show that the pillar-reinforcing bolt can provide strong horizontal restraint on the rock pillar, improve the mechanical properties of the rock mass, and has the extrusion reinforcement effect. The pillar-reinforcing bolt also utilizes friction resistance to improve the stress state of the shallow surrounding rock and anchor the deep rock, which has the load transfer effect. The axial force and shear stress of the pillar-reinforcing bolt decrease nonlinearly from both outsides to the insides, and the function range is limited within the shallow layer of the rock pillar. This trend is verified by field measured data. The parameter influences on the mechanical behavior of the pillar-reinforcing bolt are systematically analyzed, and the critical bolt length and reasonable bolt diameter are proposed accordingly. Based on the engineering practice of the closely spaced tunnels in the Great Wall Station of Beijing Zhangjiakou high-speed railway, the design of pillar-reinforcing bolt is actively enhanced. After the design change, the average values of surrounding rock pressure, crown settlement, and horizontal convergence are reduced by 12.2%, 14.1%, and 10.2%, respectively. The safety state of closely spaced tunnels is significantly safeguarded.

Key words: closely spaced tunnels, rock tunnels, rock pillar, pillar-reinforcing bolt, anchoring mechanism

中图分类号: 

  • TU 452
[1] 刘泉声,彭星新,黄 兴,雷广峰,魏 莱,刘 鹤,. 全断面隧道掘进机护盾受力监测及卡机预警[J]. , 2018, 39(9): 3406-3414.
[2] 王帅帅,高 波,范凯祥,申玉生,张 涛,. 平面P波入射下浅埋平行双洞隧道注浆加固减震机制[J]. , 2018, 39(2): 683-690.
[3] 腾俊洋 ,张宇宁,唐建新,张 闯,李臣林, . 单轴压缩下含层理加锚岩石力学特性研究[J]. , 2017, 38(7): 1974-1982.
[4] 邓 建,肖 明,谢冰冰, . 预应力锚索受力特性与初始张拉吨位优化分析[J]. , 2016, 37(8): 2359-2365.
[5] 胡 超 ,周 伟 ,常晓林 ,马 刚 , . 散粒体中锚杆间距的锚固效应研究[J]. , 2014, 35(7): 2088-2094.
[6] 赵同彬 ,谭云亮 ,刘姗姗 ,肖亚勋 . 加锚岩体流变特性及锚固控制机制分析[J]. , 2012, 33(6): 1730-1734.
[7] 刘 鸿,周德培. 压力分散型锚索内力变化规律试验研究[J]. , 2012, 33(4): 1040-1044.
[8] 蒋 坤 ,夏才初 ,卞跃威. 节理岩体中双向八车道小净距隧道施工方案优化分析[J]. , 2012, 33(3): 841-847.
[9] 朱正国 ,孙明路 ,朱永全 ,孙星亮 . 超小净距隧道爆破振动现场监测及动力响应分析研究[J]. , 2012, 33(12): 3747-3752.
[10] 王 辉,陈卫忠,陈培帅,田洪铭,曹俊杰,赵武胜. 浅埋大跨小净距隧道断面形态及合理间距的优化研究[J]. , 2011, 32(S2): 641-646.
[11] 韩同春,郑俊清,朱建才,黄福明,史生志. 半硬半软岩层小净距隧道洞口段监测分析[J]. , 2010, 31(S2): 303-307.
[12] 龚建伍,雷学文. 大断面小净距隧道围岩稳定性数值分析 大断面小净距隧道围岩稳定性数值分析[J]. , 2010, 31(S2): 412-417.
[13] 文志杰,石永奎,崔增娣,王荣超. 全长黏结型预应力锚杆受力特性研究[J]. , 2010, 31(S1): 177-181.
[14] 郭 军,王明年,谭忠盛,罗禄森. 大跨浅埋黄土隧道中系统锚杆受力机制研究[J]. , 2010, 31(3): 870-874.
[15] 张国华,陈礼彪,钱师雄,蔡光远,吴超凡,李 祺. 大断面小净距大帽山隧道现场监控量测及分析[J]. , 2010, 31(2): 489-496.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .