岩土力学 ›› 2022, Vol. 43 ›› Issue (7): 1854-1864.doi: 10.16285/j.rsm.2021.1745

• 基础理论与实验研究 • 上一篇    下一篇

基于破损参数简化的二元介质冻结粉 细砂土本构模型

张树明1, 2,蒋关鲁1, 2,叶雄威1, 2,蔡俊峰1, 2,袁胜洋1, 2,罗斌3   

  1. 1. 西南交通大学 土木工程学院,四川 成都 610031;2. 西南交通大学 高速铁路线路工程教育部重点实验室,四川 成都 610031; 3. 四川农业大学 土木工程学院,四川 都江堰 611830
  • 收稿日期:2021-10-17 修回日期:2022-04-11 出版日期:2022-07-26 发布日期:2022-08-04
  • 通讯作者: 蒋关鲁,男,1962年生,博士,教授,主要从事道路与铁道工程方面的研究工作。E-mail: wgljiang@swjtu.edu.cn E-mail:shumingzsm@my.swjtu.edu.cn
  • 作者简介:张树明,男,1989年生,博士研究生,主要从事高速铁路路基及地基处理设计方面的研究工作。
  • 基金资助:
    国家自然科学基金资助项目(No. 51878577)

A constitutive model for frozen silty sand based on binary medium model simplified by breakage parameter

ZHANG Shu-ming1, 2, JIANG Guan-lu1, 2, YE Xiong-wei1, 2, CAI Jun-feng1, 2, YUAN Sheng-yang1, 2, LUO Bin3   

  1. 1. School of Civil Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China; 2. Key Laboratory of High-speed Railway Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031, China; 3. College of Civil Engineering, Sichuan Agricultural University, Dujiangyan, Sichuan 611830, China
  • Received:2021-10-17 Revised:2022-04-11 Online:2022-07-26 Published:2022-08-04
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51878577).

摘要: 二元介质模型在非冻结岩土材料中已得到广泛研究,但在冻土领域的相关研究尚不充分。为探讨三轴试验条件下冻结粉细砂土的强度变形特性,此处引入二元介质理论对冻土应力−应变关系进行分析研究。针对现有二元介质模型参量多、确定方法复杂的特点,推导了基于破损参数简化的二元介质模型;并结合开展的5种细颗粒含量、4种围压条件下的冻土三轴试验,对推导模型进行了验证。结果表明:随轴向应变的增大,应力−应变曲线可划分为线弹性阶段、弹塑性阶段和应变软化阶段,3个阶段均可通过胶结元和摩擦元转化理论进行较好的解释;同一围压下随细颗粒含量的增大,偏应力和体胀最大值均呈降低趋势,抗剪强度呈线性减小趋势;在横截面积修正条件下,随轴向应变的增大,5种细颗粒含量冻结粉细砂土均表现为应变软化特性,体积变形表现出由体缩向体胀转化发展的趋势;偏应力发展3个阶段的转折点,与体积变形中体缩极值点和体缩体胀转折点较为契合;通过三轴试验偏应力实测值与基于破损参数简化的二元介质本构模型计算值对比分析,简化模型可以较好地模拟冻结粉细砂土的偏应力−轴向应变关系。

关键词: 冻结粉细砂土, 二元介质模型, 三轴试验, 应力?应变关系, 破损机制

Abstract: The binary medium model has been widely studied in unfrozen geomaterials, however, it is still not well studied for frozen soil. In order to investigate the strength-deformation characteristics of frozen silty sand in triaxial test, the binary medium theory is introduced to interpret the stress-strain relationship of frozen soil. There are plenty of parameters for existing binary medium model, and the determination of parameters is with complexity. A binary medium model is proposed based on simplified breakage parameter. The triaxial tests of frozen soil were performed under five kinds of fine particle content and four kinds of confining pressure conditions, and the validity of proposed model was examined by test results. It is revealed that the stress-strain relationship can be divided into three stages with the increase of axial strain, namely, linear elasticity stage, elastoplastic stage, and strain softening stage. Based on binary medium model, all three stages can be well explained by the transformation theory of bonding element and friction element. Under the identical confining pressure conditions, both deviatoric stress and the maximum values of bulk expansion decrease, while the shear strength decreases linearly with the increase of fine particle content. Considering cross-section area correction, the silty sand with different fine particle contents presents softening characteristics, and the volume deformation shows the pattern from shrinkage to expansion with the increase of axial strain. The turning points of the three stages of deviatoric stress development are in good agreement with the extreme point of volume shrinkage and the turning point of volume expansion. Comparing the measured deviatoric stress in triaxial tests with the calculated by binary medium based on simplified breakage parameter, it is believed that the proposed model is able to simulate the stress-strain relationship of frozen silty sand in triaxial tests.

Key words: frozen silty sand, binary medium model, triaxial shear test, stress-strain relationship, breakage mechanism

中图分类号: 

  • TU 445
[1] 徐龙飞, 翁效林, WONG Henry, FABBRI Antonin, 朱谭谭, . 温、湿控制生土三轴试验装置的研制与应用[J]. 岩土力学, 2022, 43(8): 2327-2336.
[2] 李明枫, 王永政, 张婷婷, . 三维应力状态下饱和软黏土循环动力特性试验研究[J]. 岩土力学, 2022, 43(6): 1523-1532.
[3] 姜玥, 周辉, 卢景景, 高阳, . 空心圆柱砂岩真三轴试验研究[J]. 岩土力学, 2022, 43(4): 932-944.
[4] 王海波, 吕伟华, 武荘, 朱文波, . 不同温度应力路径下饱和黏土剪切特性[J]. 岩土力学, 2022, 43(3): 679-687.
[5] 王瑞, 泮晓华, 唐朝生, 吕超, 王殿龙, 董志浩, 施斌. MICP联合纤维加筋改性钙质砂的动力特性研究[J]. 岩土力学, 2022, 43(10): 2643-2654.
[6] 程桦, 刘向阳, 曹如康, 王雪松, . 类砂质泥岩常规三轴浆压致裂起裂压力试验研究[J]. 岩土力学, 2022, 43(10): 2655-2664.
[7] 刘婕, 张黎明, 丛宇, 王在泉, . 真三轴应力路径花岗岩卸荷破坏力学特性研究[J]. 岩土力学, 2021, 42(8): 2069-2077.
[8] 陈晓斌, 杨宁宇, 朱禹, 张俊麒, 乔世范, . 轮胎衍生骨料级配碎石混合料应力−应变关系 大型三轴试验研究[J]. 岩土力学, 2021, 42(4): 921-931.
[9] 杨爱武, 徐彩丽, 郎瑞卿, 王韬, . 冻融循环作用下城市污泥固化土三维力学 特性及其破坏准则[J]. 岩土力学, 2021, 42(4): 963-975.
[10] 汪华斌, 周宇, 余刚, 周博, 张爱军, . 结构性花岗岩残积土三轴试验研究[J]. 岩土力学, 2021, 42(4): 991-1002.
[11] 任华平, 刘希重, 宣明敏, 叶新宇, 李强, 张升, . 循环荷载作用下击实粉土累积塑性变形研究[J]. 岩土力学, 2021, 42(4): 1045-1055.
[12] 李亚峰, 聂如松, 李元军, 冷伍明, 阮波, . 间歇性循环荷载下路基细粒土填料永久 变形特性及预测模型[J]. 岩土力学, 2021, 42(4): 1065-1077.
[13] 俞缙, 刘泽瀚, 林立华, 黄建国, 任文斌, 周垒, . 变幅循环加卸载作用下大理岩扩容特性试验研究[J]. 岩土力学, 2021, 42(11): 2934-2942.
[14] 孟庆彬, 王杰, 韩立军, 孙稳, 乔卫国, 王刚, . 极弱胶结岩石物理力学特性及本构模型研究[J]. 岩土力学, 2020, 41(S1): 19-29.
[15] 王家全, 畅振超, 唐毅, 唐滢, . 循环荷载下加筋砾性土填料的动三轴试验分析[J]. 岩土力学, 2020, 41(9): 2851-2860.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .