岩土力学 ›› 2022, Vol. 43 ›› Issue (3): 679-687.doi: 10.16285/j.rsm.2021.0987

• 基础理论与实验研究 • 上一篇    下一篇

不同温度应力路径下饱和黏土剪切特性

王海波1,吕伟华1,武荘1,朱文波2   

  1. 1. 南京林业大学 土木工程学院,江苏 南京 2100371;2. 东南大学 土木工程学院,江苏 南京 211189
  • 收稿日期:2021-07-01 修回日期:2021-12-31 出版日期:2022-03-22 发布日期:2022-03-22
  • 作者简介:王海波,男,1979年生,博士,高级实验师,主要从事岩土体温度效应、土动力学及不良地基加固及处理方面的教学研究工作。
  • 基金资助:
    国家自然科学基金(No.51508279);江苏省自然科学基金(No.BK20150885);江苏高校优势学科建设工程资助项目(No.PAPD)。

Shear characteristics of saturated clay under different temperature stress path

WANG Hai-bo1, LÜ Wei-hua1, WU Zhuang1, ZHU Wen-bo2   

  1. 1. Department of Civil Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; 2 .School of Civil Engineering, Southeast University, Nanjing, Jiangsu 210096, China
  • Received:2021-07-01 Revised:2021-12-31 Online:2022-03-22 Published:2022-03-22
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(51508279), the Natural Science Foundation of Jiangsu Province(BK20150885) and the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).

摘要: 在精准温控动三轴试验系统上开展了不同温度及不同升温路径饱和黏土剪切试验研究,探讨了不同温度对饱和软黏土不排水剪切特性的影响,分析不同升温固结方式对饱和软黏土孔压发展、体变、强度以及模量的影响规律。试验结果显示:在4~76 ℃试验研究范围内,环境温度升高导致饱和软黏土的不排水剪切强度有所减少,但温度升高对土体模量增加影响明显,温度T和模量ET关系可用ET = 2.69T 0.3表达;升温变化时正常固结黏土产生超孔隙水压力并随着温度增大而增大,升温热固结后土的剪切强度将明显提高,且排水状态下升温固结对土剪切强度增长小于升温完成后再固结情况;土体从26 ℃分别升高20、40 ℃时,升温引起的超孔压比分别为0.41、0.61,剪切峰值强度分别增加8.23%、22.37%。研究表明:升温幅值增大会使土体热固结程度越大,升温分级越多,热固结也越充分,其对应的体变、强度增长率则越大;同时最终温度及热固结路径对其剪切相转换特征存在影响,升温越高、热固结路径越多其剪胀性越明显,但温度变化范围、固结分级、热固结路径总体上对孔隙水压力的发展基本不产生影响。

关键词: 软黏土, 温度效应, 三轴试验, 剪切特性, 应力路径

Abstract: The shear test of saturated clay with different temperatures and different heating paths was performed with the precise temperature-controlled dynamic triaxial test system. Effect of temperature on the undrained shear characteristics of saturated soft clay is explored, and the influence of different heating and consolidation methods on the pore pressure development, volume change, strength and modulus of saturated soft clay is analyzed. The results show that the undrained shear strength of saturated soft clay decreases when the ambient temperature increases from 4 ℃ to 76 ℃, but the increase in temperature has a significant effect on the increase of the soil modulus, and the relationship between them can be well fitted with the function of ET = 26.92T0.3. The excess pore water pressure of the normal consolidated clay increases with the increase of temperature, and the shear strength of the soil increases obviously after thermal consolidation, and the increase of the shear strength of the soil under the condition of drainage is less than that after the completion of thermal consolidation. When the soil mass increases from 26 ℃ by 20 and 40 ℃, the heating induced excess pore water pressure ratio is 0.41 and 0.61, and the shear peak strength increases by 8.23% and 22.37%, respectively . Studies reveal that the increase of heating amplitude will increase the degree of reconsolidation of the soil perturbation, and the more the thermal consolidation grading is, the more sufficient thermal consolidation is, and the corresponding volume change and strength growth rate are larger. At the same time, the final temperature and thermal consolidation path have an impact on the shear phase transition characteristics. The higher the temperature is, the more the thermal consolidation path is, and the more obvious the dilatancy is. However, the temperature range, consolidation classification and thermal consolidation path generally have little influence on the development of pore water pressure in general.

Key words: soft clay, temperature effect, triaxial test, shear characteristic, stress path

中图分类号: 

  • TU473
[1] 姜玥, 周辉, 卢景景, 高阳, . 空心圆柱砂岩真三轴试验研究[J]. 岩土力学, 2022, 43(4): 932-944.
[2] 朱文波, 戴国亮, 王博臣, 龚维明, 王海波, 张宇, . 吸力式沉箱基础底部土体卸荷蠕变及其长期 抗拔承载特性研究[J]. 岩土力学, 2022, 43(3): 669-678.
[3] 侯娟, 邢行, 徐东, 陆向前, . 土工膜-土工布界面动力剪切特性试验研究[J]. 岩土力学, 2022, 43(2): 365-376.
[4] 朱文波, 戴国亮, 王博臣, 龚维明, 孙捷, 胡皓, . 吸力式沉箱底部土体循环特性 及其等效循环蠕变模型研究[J]. 岩土力学, 2022, 43(2): 466-478.
[5] 刘婕, 张黎明, 丛宇, 王在泉, . 真三轴应力路径花岗岩卸荷破坏力学特性研究[J]. 岩土力学, 2021, 42(8): 2069-2077.
[6] 胡云世, 徐云山, 孙德安, 陈波, 曾召田, . 温度对颗粒膨润土热传导特性的影响[J]. 岩土力学, 2021, 42(7): 1774-1782.
[7] 陈晓斌, 杨宁宇, 朱禹, 张俊麒, 乔世范, . 轮胎衍生骨料级配碎石混合料应力−应变关系 大型三轴试验研究[J]. 岩土力学, 2021, 42(4): 921-931.
[8] 汪华斌, 周宇, 余刚, 周博, 张爱军, . 结构性花岗岩残积土三轴试验研究[J]. 岩土力学, 2021, 42(4): 991-1002.
[9] 任华平, 刘希重, 宣明敏, 叶新宇, 李强, 张升, . 循环荷载作用下击实粉土累积塑性变形研究[J]. 岩土力学, 2021, 42(4): 1045-1055.
[10] 郑罗斌, 王亮清, 朱林锋, 姜耀飞, 王斌. 锁定方式对锚固节理剪切特性影响的试验研究[J]. 岩土力学, 2021, 42(4): 1056-1064.
[11] 李亚峰, 聂如松, 李元军, 冷伍明, 阮波, . 间歇性循环荷载下路基细粒土填料永久 变形特性及预测模型[J]. 岩土力学, 2021, 42(4): 1065-1077.
[12] 雷华阳, 许英刚, 缪姜燕, 刘旭. 动渗耦合作用下软黏土动力特性试验研究[J]. 岩土力学, 2021, 42(3): 601-610.
[13] 胡利文, 刘志军, . 真空预压加固土体变形机制分析[J]. 岩土力学, 2021, 42(3): 790-799.
[14] 俞缙, 刘泽瀚, 林立华, 黄建国, 任文斌, 周垒, . 变幅循环加卸载作用下大理岩扩容特性试验研究[J]. 岩土力学, 2021, 42(11): 2934-2942.
[15] 任连伟, 曹辉, 孔纲强, . 注入位置对化学电渗法加固软黏土 效果影响试验研究[J]. 岩土力学, 2021, 42(10): 2705-2712.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .