岩土力学 ›› 2022, Vol. 43 ›› Issue (2): 466-478.doi: 10.16285/j.rsm.2021.1072

• 基础理论与实验研究 • 上一篇    下一篇

吸力式沉箱底部土体循环特性 及其等效循环蠕变模型研究

朱文波1, 2,戴国亮1, 2,王博臣1, 2,龚维明1, 2,孙捷3,胡皓3   

  1. 1. 东南大学 混凝土及预应力混凝土结构教育重点实验室,江苏 南京 211189; 2. 东南大学 土木工程学院,江苏 南京 211189;3. 华能国际电力江苏能源开发有限公司清洁能源分公司,江苏 南京 210003
  • 收稿日期:2021-07-15 修回日期:2021-11-12 出版日期:2022-02-11 发布日期:2022-02-22
  • 通讯作者: 戴国亮,男,1975年生,博士,教授,博士生导师,长期从事地下结构工程方面的教学与研究工作。E-mail: daigl@seu.edu.cn E-mail:230169390@seu.edu.cn
  • 作者简介:朱文波,男,1990年生,博士,博士后,长期从事海洋岩土以及地下结构方面的研究工作
  • 基金资助:
    国家自然科学基金(No. 52078128,No. 51878160,No. 51678145);中国华能集团有限公司科技项目(No. HNKJ19-H17)

Study on cyclic characteristics and equivalent cyclic creep model of the soft clay at the bottom of suction caisson foundation

ZHU Wen-bo1, 2, DAI Guo-liang1, 2, WANG Bo-chen1, 2, GONG Wei-ming1, 2, SUN Jie3, HU Hao3   

  1. 1. Key Laboratory of Concrete and Prestressed Concrete Structure of Ministry of Education, Southeast University, Nanjing, Jiangsu 211189, China; 2. School of Civil Engineering, Southeast University, Nanjing, Jiangsu 211189, China; 3. Huaneng International Power Jiangsu Energy Development Co., Ltd. Clean Energy Branch, Nanjing, Jiangsu 210003, China
  • Received:2021-07-15 Revised:2021-11-12 Online:2022-02-11 Published:2022-02-22
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (52078128, 51878160, 51678145) and the Science and Technology Project of China Huaneng Group Co., Ltd (HNKJ19-H17).

摘要: 吸力式沉箱基础作为张力腿平台(TLP)的锚固基础,其底部土体不仅存在轴向卸荷作用,而且还存在循环荷载作用。现有研究很少涉及在卸荷条件下进行的软黏土循环累积变形研究。因此,通过循环三轴试验研究了轴向卸荷条件下软黏土的应变累积变形及应变软化特性。试验结果表明:在低静偏应力以及动偏应力条件下,土体应变累积及软化程度较低;随着动偏应力增加,循环累积变形逐渐变大且前期发展较快后期趋于稳定,同时应变软化程度逐渐增大;土体循环累积变形随动偏应力提高而增大,其循环累积应变曲线呈衰减-稳定的蠕变特性。在试验基础上,提出与静偏应力和动偏应力有关的软化系数公式。构建了考虑软化系数与静偏应力、动偏应力等条件下软黏土等效循环蠕变模型。将该模型推广至三维,并开发了有限元子程序。建立了循环荷载作用下吸力式沉箱基础循环抗拔承载力有限元分析法,将其用于吸力式沉箱基础循环累积变形分析中,并与沉箱模型循环试验结果进行了对比验证。

关键词: 吸力式沉箱基础, 软黏土, 应变软化, 累积变形, 等效循环蠕变模型, 有限元

Abstract: As the anchoring foundation of the tension leg platform (TLP), suction caisson foundation is not only subjected to the vertical pullout load but also subjected to the cyclic load. However, there are few studies on the mechanism of the cyclic characteristics of soft clay under unloading condition. In this study, the cyclic triaxial tests under axial unloading were carried out to obtain the cyclic cumulative deformation and strain softening characteristics of soft clay. The results show that the degree of strain accumulation and softening coefficient were low under the condition of low static deviator stress and dynamic deviator stress. With the increase of dynamic deviator stress, the cumulative cyclic deformation gradually increased and rapidly developed in the early stage and tended to be stable in the late stage. Meanwhile, the softening of soil gradually increased. The cyclic cumulative deformation of soil increased with the increase of dynamic deviator stress, and the cyclic cumulative strain curve showed attenuation-stability creeping characteristics. Based on the tests, a formula for softening coefficient related to static deviator stress and dynamic deviator stress was introduced to describe the test results of soft clay under different stress levels. Considering the influence of static deviator stress, dynamic deviator stress and softening coefficient, an equivalent cyclic creep model of soft clay was established. On this basis, a three-dimensional equivalent cyclic creep model was built, and a finite element subroutine was developed. The finite element method for cyclic uplift capacity of caisson was established to analyze the cyclic cumulative deformation of soil. It was verified by comparing with the test results.

Key words: suction caisson foundation, soft clay, strain softening, cumulative deformation, equivalent cyclic creep model, finite element

中图分类号: 

  • TU 411
[1] 陈康, 刘先峰, 袁胜洋, 潘申鑫, 马杰, 蒋关鲁, . 饱和红层泥岩填料累积变形特性及安定界限研究[J]. 岩土力学, 2022, 43(5): 1261-1268.
[2] 焦钰祺, 贺林林, 梁越, 刘旭菲, . 考虑结构性黏土应变软化效应的 桩靴竖向承载特性研究[J]. 岩土力学, 2022, 43(5): 1374-1382.
[3] 刘映晶, 杨杰, 尹振宇, . 内部侵蚀对地下结构影响的数值分析: 在隧道渗漏问题上的应用[J]. 岩土力学, 2022, 43(5): 1383-1390.
[4] 朱文波, 戴国亮, 王博臣, 龚维明, 王海波, 张宇, . 吸力式沉箱基础底部土体卸荷蠕变及其长期 抗拔承载特性研究[J]. 岩土力学, 2022, 43(3): 669-678.
[5] 王海波, 吕伟华, 武荘, 朱文波, . 不同温度应力路径下饱和黏土剪切特性[J]. 岩土力学, 2022, 43(3): 679-687.
[6] 王永红, 杜文, 张国辉, 宋扬, . 基于广义张−朱强度准则的深埋隧道 围岩塑性分析及应用探讨[J]. 岩土力学, 2022, 43(3): 819-830.
[7] 孙锐, 阳军生, 李雨哲, 杨峰, 刘守花. 基于广义Hoek-Brown屈服准则的极限分析 下限有限元法[J]. 岩土力学, 2021, 42(6): 1733-1742.
[8] 朱晟, 张远, 加力别克·阿哈力别克, 喻建清, 何兆升, . 基于增量分析的堆石坝瞬变-流变参数联合反演[J]. 岩土力学, 2021, 42(5): 1453-1461.
[9] 刘嘉, 冯德銮, . 考虑土颗粒微细观运动的多尺度耦合 有限元分析方法[J]. 岩土力学, 2021, 42(4): 1186-1200.
[10] 雷华阳, 许英刚, 缪姜燕, 刘旭. 动渗耦合作用下软黏土动力特性试验研究[J]. 岩土力学, 2021, 42(3): 601-610.
[11] 魏匡民, 陈生水, 马洪玉, 李国英, 米占宽, . 黏弹性方法用于面板堆石坝动力分析时必要的改进[J]. 岩土力学, 2021, 42(12): 3475-3484.
[12] 胡静, 唐跃, 张家康, 邓涛. 高速列车荷载作用下饱和软土地基动力响应研究[J]. 岩土力学, 2021, 42(11): 3169-3181.
[13] 任连伟, 曹辉, 孔纲强, . 注入位置对化学电渗法加固软黏土 效果影响试验研究[J]. 岩土力学, 2021, 42(10): 2705-2712.
[14] 张玲, 欧强, 赵明华, 丁选明, 刘健飞, . 移动荷载下土工加筋路堤动力响应特性数值分析[J]. 岩土力学, 2021, 42(10): 2865-2874.
[15] 戴轩, 郭旺, 程雪松, 霍海峰, 刘国光, . 盾构隧道平行侧穿诱发的建筑纵向沉降 实测与模拟分析[J]. 岩土力学, 2021, 42(1): 233-244.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .