岩土力学 ›› 2021, Vol. 42 ›› Issue (5): 1453-1461.doi: 10.16285/j.rsm.2020.1505

• 数值分析 • 上一篇    下一篇

基于增量分析的堆石坝瞬变-流变参数联合反演

朱晟1, 2,张远1, 2,加力别克·阿哈力别克1, 2,喻建清3,何兆升3   

  1. 1. 河海大学 水文水资源与水利水电工程科学国家重点实验室,江苏 南京 210098;2. 河海大学 水利水电学院,江苏 南京 210098; 3.中国电建昆明勘测设计研究院有限公司,云南 昆明 650051
  • 收稿日期:2020-10-08 修回日期:2020-12-21 出版日期:2021-05-11 发布日期:2021-05-08
  • 作者简介:朱晟,男,1965 年生,博士,教授,博士生导师,主要从事土石坝等水工岩土与环境岩土方面的研究
  • 基金资助:
    国家重点研发计划(No. 2017YFC0404805,No. 2017YFC0404801)

Joint inversion method of instantaneous and creep parameters of rockfill dam based on incremental analysis

ZHU Sheng1, 2, ZHANG Yuan1, 2, JIALIBIEKE Ahalibieke1, 2, YU Jian-qing3, HE Zhao-sheng3   

  1. 1. State Key Laboratory of Hydrology, Water Resources and Hydraulic Engineering, Hohai University, Nanjing, Jiangsu 210098, China; 2. College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing, Jiangsu 210098, China; 3. Power China Kunming Engineering Corporation Limited, Kunming, Yunnan 650051, China
  • Received:2020-10-08 Revised:2020-12-21 Online:2021-05-11 Published:2021-05-08
  • Supported by:
    This work was supported by the National Key Research and Development Plan (2017YFC0404805,2017YFC0404801).

摘要: 结合南欧江7级面板坝的原型监测资料,提出了基于增量分析的堆石坝瞬变-流变参数联合反演方法。利用停工期或相对停工期堆石体的变形,对流变与瞬变本构模型参数的解耦,在免疫遗传算法的基础上反演了堆石的增量流变模型和E-B模型参数,并分析了当前广泛使用的水管式沉降仪测量结果可靠性和反演分析的精度。结果表明:(1)依据现行规范得到的堆石料室内试验结果,高估了现场填筑体的力学参数,计算沉降比大坝实际值减小了28%;(2)由于埋设时间滞后于大坝填筑过程以及土拱效应的存在,使得水管式沉降仪的实测沉降量比大坝实际沉降量减小45%,水管式沉降仪的实测变形不能直接应用于反演分析;(3)根据现场仪器埋设情况,建立了漏测量与沟槽内外土压力比的函数关系式,可修正水管式沉降仪测值;(4)分时段的增量反演方法可避免水管式沉降仪测量过程存在的“漏测与少测”等系统误差,得到计算值与实际变形吻合较好,更适用于土石坝力学参数反演分析。

关键词: 堆石坝, 监测变形, 流变, 有限元, 反演分析, 土拱效应

Abstract: Based on the original monitoring data of Nanoujiang VII grade CFRD, a joint inversion method of transient-rheological parameters for rockfill dam based on the incremental analysis was proposed. The parameters of the incremental rheological model and E-B model of rockfill were inversed using the immune genetic algorithm. The reliability of the measurement results and the accuracy of the inversion analysis of hydraulic overflow settlement gauge were studied. The results show that: (1) The laboratory test parameters of the rockfill materials obtained according to the current norms are much higher than the parameters of the practical field filling body, and the calculated settlement is 28% less than the measured value of the dam. (2) Due to the fact that the embedding time lags behind the actual filling process of the dam and the existence of the soil arching effect, the measured settlement from the hydraulic overflow settlement gauge is 45% less than the actual settlement of the dam. The measured deformation cannot be directly used for the inversion analysis. (3) According to the embedded condition of the field monitoring instruments, the function relation between the leakage measurement and the ratio of inside soil pressure to outside soil pressure of the trench is established, which can be used to correct the measured value of the hydraulic overflow settlement gauge. (4) The incremental inversion method in different periods can avoid the miss and less measurement value in the measurement process of the hydraulic overflow settlement gauge. The calculated value is in good agreement with the actual deformation, and therefore it is more suitable for the back analysis of mechanical parameters of earth-rockfill dams.

Key words: rockfill dam, deformation monitoring, creep, finite element, back analysis, soil arching effect

中图分类号: 

  • TV 641.4
[1] 朱晟, 卢知是, 刘纯, 王京, . 堆石体现场振动压实试验研究与应用[J]. 岩土力学, 2021, 42(9): 2569-2577.
[2] 孙锐, 阳军生, 李雨哲, 杨峰, 刘守花. 基于广义Hoek-Brown屈服准则的极限分析 下限有限元法[J]. 岩土力学, 2021, 42(6): 1733-1742.
[3] 刘嘉, 冯德銮, . 考虑土颗粒微细观运动的多尺度耦合 有限元分析方法[J]. 岩土力学, 2021, 42(4): 1186-1200.
[4] 戴轩, 郭旺, 程雪松, 霍海峰, 刘国光, . 盾构隧道平行侧穿诱发的建筑纵向沉降 实测与模拟分析[J]. 岩土力学, 2021, 42(1): 233-244.
[5] 刘泉声, 王栋, 朱元广, 杨战标, 伯音, . 支持向量回归算法在地应力场反演中的应用[J]. 岩土力学, 2020, 41(S1): 319-328.
[6] 王翔南, 郝青硕, 喻葭临, 于玉贞, 吕禾. 基于扩展有限元法的大坝面板脱空三维模拟分析[J]. 岩土力学, 2020, 41(S1): 329-336.
[7] 鲍宁, 魏静, 陈建峰. 桩承式路堤土拱效应三维离散元分析[J]. 岩土力学, 2020, 41(S1): 347-354.
[8] 庄妍, 李劭邦, 崔晓艳, 董晓强, 王康宇, . 高铁荷载下桩承式路基动力响应及土拱效应研究[J]. 岩土力学, 2020, 41(9): 3119-3130.
[9] 刘克奇, 丁万涛, 陈瑞, 侯铭垒, . 盾构掌子面三维破坏模型构建与极限支护力计算[J]. 岩土力学, 2020, 41(7): 2293-2303.
[10] 薛阳, 吴益平, 苗发盛, 李麟玮, 廖康, 张龙飞. 库水升降条件下考虑饱和渗透系数空间变异性的白水河滑坡渗流变形分析[J]. 岩土力学, 2020, 41(5): 1709-1720.
[11] 高俊, 党发宁, 马宗源. 超高沥青混凝土心墙高应力水平的降低措施研究[J]. 岩土力学, 2020, 41(5): 1730-1739.
[12] 杨峰, 何诗华, 吴遥杰, 计丽艳, 罗静静, 阳军生. 非均质黏土地层隧道开挖面稳定运动 单元上限有限元分析[J]. 岩土力学, 2020, 41(4): 1412-1419.
[13] 江南, 黄林, 冯君, 张圣亮, 王铎, . 铁路悬索桥隧道式锚碇设计计算方法研究[J]. 岩土力学, 2020, 41(3): 999-1009.
[14] 徐进, 王少伟, 杨伟涛. 水位变化下可压缩土层的黏弹性耦合变形分析[J]. 岩土力学, 2020, 41(3): 1065-1073.
[15] 黄宇华, 徐林荣, 周俊杰, 蔡雨, . 基于改进Terzarghi方法的桩网地基桩土应力计算[J]. 岩土力学, 2020, 41(2): 667-675.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[2] 梁桂兰,徐卫亚,谈小龙. 基于熵权的可拓理论在岩体质量评价中的应用[J]. , 2010, 31(2): 535 -540 .
[3] 马文涛. 基于灰色最小二乘支持向量机的边坡位移预测[J]. , 2010, 31(5): 1670 -1674 .
[4] 于琳琳,徐学燕,邱明国,闫自利,李鹏飞. 冻融作用对饱和粉质黏土抗剪性能的影响[J]. , 2010, 31(8): 2448 -2452 .
[5] 王 伟,刘必灯,周正华,王玉石,赵纪生. 刚度和阻尼频率相关的等效线性化方法[J]. , 2010, 31(12): 3928 -3933 .
[6] 王海波,徐 明,宋二祥. 基于硬化土模型的小应变本构模型研究[J]. , 2011, 32(1): 39 -43 .
[7] 曹光栩,宋二祥,徐 明. 山区机场高填方地基工后沉降变形简化算法[J]. , 2011, 32(S1): 1 -5 .
[8] 刘华丽 ,朱大勇 ,钱七虎 ,李宏伟. 边坡三维端部效应分析[J]. , 2011, 32(6): 1905 -1909 .
[9] 刘年平 ,王宏图 ,袁志刚 ,刘竟成. 砂土液化预测的Fisher判别模型及应用[J]. , 2012, 33(2): 554 -557 .
[10] 王卫东 ,李永辉 ,吴江斌 . 超长灌注桩桩-土界面剪切模型及其有限元模拟[J]. , 2012, 33(12): 3818 -3824 .