岩土力学 ›› 2021, Vol. 42 ›› Issue (10): 2865-2874.doi: 10.16285/j.rsm.2021.0352

• 数值分析 • 上一篇    下一篇

移动荷载下土工加筋路堤动力响应特性数值分析

张玲1, 2,欧强1, 2, 3, 4,赵明华1, 2,丁选明3, 4,刘健飞5   

  1. 1. 湖南大学 土木工程学院,湖南 长沙 410082;2. 湖南大学 建筑安全与节能教育部重点实验室,湖南 长沙 410082;3. 重庆大学 土木工程学院,重庆 400045;4. 重庆大学 山地城镇建设与新技术教育部重点实验室,重庆 400045;5. 中国联合工程有限公司,浙江 杭州 310052
  • 收稿日期:2021-03-10 修回日期:2021-06-24 出版日期:2021-10-11 发布日期:2021-10-21
  • 通讯作者: 欧强,男,1992年生,博士,助理研究员,主要从事复合地基与土工加筋技术的研究工作。E-mail: ouq126@cqu.edu.cn E-mail:zhanglhd@163.com
  • 作者简介:张玲,女,1982年生,博士,副教授,主要从事软基处理及桩基础方面的研究工作。
  • 基金资助:
    国家自然科学基金(No. 52078205,No. 52108299);湖南省自然科学基金(No. 2020JJ3013);中国博士后科学基金(No. 2021M693740)。

Numerical analysis on dynamic response characteristics of geosynthetic reinforced embankment under moving load

ZHANG Ling1, 2, OU Qiang1, 2, 3, 4, ZHAO Ming-hua1, 2, DING Xuan-ming3, 4, LIU Jian-fei5   

  1. 1. College of Civil Engineering, Hunan University, Changsha, Hunan 410082, China; 2. Key Laboratory of Building Safety and Energy Efficiency of the Ministry of Education, Hunan University, Changsha, Hunan 410082, China; 3. College of Civil Engineering, Chongqing University, Chongqing 400045, China; 4. Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing University, Chongqing 400045, China; 5. China United Engineering Corporation Limited, Hangzhou, Zhejiang 310052, China
  • Received:2021-03-10 Revised:2021-06-24 Online:2021-10-11 Published:2021-10-21
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (52078205, 52108299), the Natural Science Foundation of Hunan Province, China (2020JJ3013) and the China Postdoctoral Science Foundation (2021M693740).

摘要: 交通移动荷载下土工加筋路堤的动力响应问题一直备受工程界关注。利用ABAQUS有限元软件建立了土工加筋路堤三维数值模型,深入分析了移动荷载下土工加筋路堤的动应力和变形的变化规律。交通移动荷载采用两个移动矩形面荷载模拟,并自行编制Fortran子程序以控制移动荷载的幅值、作用范围及移动速度;编制等效线性黏弹性模型模拟路堤填土以反映路堤填土的黏弹性;土工格栅采用T3D2桁架单元模拟;采用无限元减小由于模型尺寸带来的边界效应;进而建立了不考虑排水固结时移动荷载下土工加筋路堤数值分析模型。利用已有文献结果和计算结果进行了加筋路堤横截面变形和路堤顶面应力的对比验证,并分析了土工加筋路堤数值模型在移动荷载下的纵、横截面动应力分布,竖向动应力分布特性以及车辆超载。结果表明:动应力和动变形在路堤上表面1.0 m以内范围衰减较快,并逐渐过渡为一个等效的幅值较小的均布荷载作用。在相同深度处,轮载正下方的动应力衰减系数最小,双轮载中心处次之,轮载外边缘衰减系数最大。

关键词: 移动荷载, 土工合成材料, 加筋路堤, 有限元, 动力响应

Abstract: The dynamic response of geosynthetic reinforced embankment under traffic moving load has attracted increasing attentions in engineering field. A 3D model of geosynthetic reinforced embankment was established by using the ABAQUS finite element software in this paper, which was used to analyze the dynamic stress and deformation of geosynthetic reinforced embankment under moving load. The traffic load was simulated by two moving rectangular plane loads. Fortran subroutine was developed to control the amplitude, range, and speed of the moving load. The equivalent linear viscoelastic model was developed to simulate embankment fill to reflect the viscoelasticity of embankment fill. The geogrid was simulated by T3D2 truss element. The infinite element was used to reduce the boundary effect caused by model size at the boundary. The numerical model of geosynthetic reinforced embankment under moving load was established without considering drainage consolidation. Based on the results of the existing literatures and the results of this paper, the cross-section deformations of the geosynthetic reinforced embankment and the stress at the embankment top surface were compared and verified. The dynamic stress distribution in the longitudinal section and transverse section and the vertical dynamic stress distribution characteristics of the geosynthetic reinforced embankment under moving load were also analyzed. The results showed that the dynamic stress and deformation decayed rapidly within the range of 1.0 m on the embankment top surface and gradually transitioned to an equivalent uniform load with small amplitude. At the same depth, the attenuation coefficient of dynamic stress under the wheel load was the smallest, followed by that at the center of double wheel loads, and the attenuation coefficient at the outer edge of the wheel load was the largest.

Key words: moving load, geosynthetics, reinforced embankment, finite element, dynamic response

中图分类号: 

  • TU 47
[1] 赵爽, 余俊, 刘新源, 胡钟伟. 悬臂式刚性墙动力响应解析研究[J]. 岩土力学, 2022, 43(1): 152-159.
[2] 饶佩森, 李丹, 孟庆山, 王新志, 付金鑫, 雷学文, . 循环荷载作用下钙质砂地基土压力分布特征研究[J]. 岩土力学, 2021, 42(6): 1579-1586.
[3] 孙锐, 阳军生, 李雨哲, 杨峰, 刘守花. 基于广义Hoek-Brown屈服准则的极限分析 下限有限元法[J]. 岩土力学, 2021, 42(6): 1733-1742.
[4] 朱晟, 张远, 加力别克·阿哈力别克, 喻建清, 何兆升, . 基于增量分析的堆石坝瞬变-流变参数联合反演[J]. 岩土力学, 2021, 42(5): 1453-1461.
[5] 刘嘉, 冯德銮, . 考虑土颗粒微细观运动的多尺度耦合 有限元分析方法[J]. 岩土力学, 2021, 42(4): 1186-1200.
[6] 窦金熙, 张贵金, 张熙, 范伟中, 宋伟, . 砂质土体脉动注浆浆−土耦合动力响应分析[J]. 岩土力学, 2021, 42(12): 3315-3327.
[7] 魏匡民, 陈生水, 马洪玉, 李国英, 米占宽, . 黏弹性方法用于面板堆石坝动力分析时必要的改进[J]. 岩土力学, 2021, 42(12): 3475-3484.
[8] 胡静, 唐跃, 张家康, 邓涛. 高速列车荷载作用下饱和软土地基动力响应研究[J]. 岩土力学, 2021, 42(11): 3169-3181.
[9] 戴轩, 郭旺, 程雪松, 霍海峰, 刘国光, . 盾构隧道平行侧穿诱发的建筑纵向沉降 实测与模拟分析[J]. 岩土力学, 2021, 42(1): 233-244.
[10] 刘泉声, 王栋, 朱元广, 杨战标, 伯音, . 支持向量回归算法在地应力场反演中的应用[J]. 岩土力学, 2020, 41(S1): 319-328.
[11] 王翔南, 郝青硕, 喻葭临, 于玉贞, 吕禾. 基于扩展有限元法的大坝面板脱空三维模拟分析[J]. 岩土力学, 2020, 41(S1): 329-336.
[12] 李福秀, 吴志坚, 严武建, 赵多银, . 基于振动台试验的黄土塬边斜坡 动力响应特性研究[J]. 岩土力学, 2020, 41(9): 2880-2890.
[13] 庄妍, 李劭邦, 崔晓艳, 董晓强, 王康宇, . 高铁荷载下桩承式路基动力响应及土拱效应研究[J]. 岩土力学, 2020, 41(9): 3119-3130.
[14] 乔向进, 梁庆国, 曹小平, 王丽丽, . 桥隧相连体系隧道洞口段动力响应研究[J]. 岩土力学, 2020, 41(7): 2342-2348.
[15] 何静斌, 冯忠居, 董芸秀, 胡海波, 刘 闯, 郭穗柱, 张聪, 武敏, 王振, . 强震区桩−土−断层耦合作用下桩基动力响应[J]. 岩土力学, 2020, 41(7): 2389-2400.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 谢兴华,王国庆. 深厚覆盖层坝基防渗墙深度研究[J]. , 2009, 30(9): 2708 -2712 .
[2] 宋 晶,王 清,孙 铁,李晓茹,张中琼,焦志亮. 吹填土自重沉淤阶段孔隙水压力消散的试验研究[J]. , 2010, 31(9): 2935 -2940 .
[3] 陈正汉,方祥位,朱元青,秦 冰,魏学温,姚志华. 膨胀土和黄土的细观结构及其演化规律研究[J]. , 2009, 30(1): 1 -11 .
[4] 夏力农,雷 鸣,聂重军. 桩顶荷载对负摩阻力性状影响的现场试验[J]. , 2009, 30(3): 664 -668 .
[5] 潘鹏志,冯夏庭,周 辉. 脆性岩石破裂演化过程的三维细胞自动机模拟[J]. , 2009, 30(5): 1471 -1476 .
[6] 叶为民,黄 伟,陈 宝,郁 陈,王 驹. 双电层理论与高庙子膨润土的体变特征[J]. , 2009, 30(7): 1899 -1903 .
[7] 王吉亮,陈剑平,杨 静,阙金声. 岩爆等级判定的距离判别分析方法及应用[J]. , 2009, 30(7): 2203 -2208 .
[8] 陈 明,卢文波,周创兵,罗 忆. 初始地应力对隧洞开挖爆生裂隙区的影响研究[J]. , 2009, 30(8): 2254 -2258 .
[9] 张 红 ,郑颖人 ,杨 臻 ,王谦源 ,葛苏鸣. 黄土隧洞支护结构设计方法探讨[J]. , 2009, 30(S2): 473 -478 .
[10] 陈建功 ,周陶陶 ,张永兴. 深部洞室围岩分区破裂化的冲击破坏机制研究[J]. , 2011, 32(9): 2629 -2634 .