岩土力学 ›› 2021, Vol. 42 ›› Issue (10): 2705-2712.doi: 10.16285/j.rsm.2021.0116

• 基础理论与实验研究 • 上一篇    下一篇

注入位置对化学电渗法加固软黏土 效果影响试验研究

任连伟1,曹辉1,孔纲强2   

  1. 1. 河南理工大学 土木工程学院,河南 焦作 454000;2. 河海大学 岩土力学与堤坝工程教育部重点实验室,江苏 南京 210024
  • 收稿日期:2021-01-20 修回日期:2021-07-26 出版日期:2021-10-11 发布日期:2021-10-18
  • 通讯作者: 孔纲强,男,1982年生,博士,教授,主要从事能源岩土工程等方面的教学与研究工作。E-mail: gqkong1@163.com E-mail: renhpu@163.com
  • 作者简介:任连伟,男,1980年生,博士,副教授,主要从事地基处理新技术与能量桩等方面的教学与科研工作
  • 基金资助:
    国家自然科学基金(No. U1810203,No. 51478165)

Experimental study on the effect of injection position on soft clay reinforcement by chemical electroosmosis

REN Lian-wei1, CAO Hui1, KONG Gang-qiang2   

  1. 1. School of Civil Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China; 2. Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing, Jiangsu 210024, China
  • Received:2021-01-20 Revised:2021-07-26 Online:2021-10-11 Published:2021-10-18
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (U1810203, 51478165).

摘要: 电渗法是低渗透软黏土地基加固的有效方法之一。然而,传统电渗法也存在耗电量大、加固效果不均匀等方面的不足。在电渗加固软基后期注入硅酸钠(Na2SiO3)及氯化钙(CaCl2)溶液,可提高软基加固均匀性、缩短电渗时间从而降低耗电量;开展化学电渗法加固软黏土模型试验,实测电渗及化学电渗过程中排水量、排水速率等,着重分析试剂注入位置对土样电阻、电流等能耗系数,以及含水率、土样强度等加固效果的影响规律;结合电镜扫描(SEM)和电感耦合等离子体质谱检测(ICP-MS),初步探讨化学电渗法加固土样微观机制。研究结果表明:本文试验条件下,在土样阳极和中间同时注入化学试剂CaCl2溶液与Na2SiO3溶液,化学电渗排水和加固效果相对最优;与传统电渗相比,排水量增加了25.5%,抗剪强度值提高了168.8%,且同时一定程度上改善了传统电渗法存在的加固效果不均匀的弊端。

关键词: 地基处理, 化学电渗法, 软黏土, 注入位置, 模型试验

Abstract: Electroosmotic reinforcement of low-permeability soft clay is one effective soft soil foundation reinforcement technique. However, excessive power consumption and uneven reinforcement effect limit its application. Chemical electroosmosis is an advanced technique which can improve the uniformity of the treated soft ground and reduce the electroosmosis time and power consumption by injecting sodium silicate (Na2SiO3) and calcium chloride (CaCl2) solutions in the late stage of electroosmosis. Model tests on chemical electroosmosis of soft ground were carried out. The overall water discharge and drainage rate during electroosmosis and chemical electroosmosis processes were measured. The energy consumption factors (such as, soil sample resistance, current, etc.) and reinforcement effects (such as, water content, soil sample strength, etc.) influenced by injection positions were analyzed in detail. Combined with scanning electron microscope (SEM) and inductively coupled plasma-mass spectrometry (ICP-MS), the microscopic mechanisms of reinforced soil sample were discussed. The results show that the relative optimal way of chemical electroosmosis is that CaCl2 solution and Na2SiO3 solution are injected simultaneously into the anode and middle of the soil sample. Compared with traditional electroosmosis method, the water discharge of chemical electroosmosis increases 25.5%, and the shear strength value increases 168.8% under the experimental conditions. The disadvantages of traditional electroosmosis such as uneven water content of the anode and cathode soil after drainage can be improved.

Key words: ground improvement, chemical electroosmosis, soft clay, injection position, model test

中图分类号: 

  • TU 472
[1] 周光新, 盛谦, 崔臻, 王天强, 马亚丽娜, 付兴伟, . 走滑断层错动影响下跨活断层铰接隧洞 破坏机制模型试验[J]. 岩土力学, 2022, 43(1): 37-50.
[2] 肖飞, 孔令伟, 刘观仕, 冯衡, 董义义, 曾二贤, . 中密风积沙地层金属装配式基础抗拔模型试 验与承载力改进计算方法[J]. 岩土力学, 2022, 43(1): 65-75.
[3] 吴慧明, 赵子荣, 林小飞, 史建乾, 龚晓南, . 主动排水固结法气举降水效应模型试验研究[J]. 岩土力学, 2021, 42(8): 2151-2159.
[4] 李元海, 刘德柱, 杨硕, 孔骏, . 深部复合地层TBM隧道围岩应力与变形 规律模型试验研究[J]. 岩土力学, 2021, 42(7): 1783-1793.
[5] 王崇宇, 刘晓平, 张家强, 曹周红, . 刚性墙后有限宽度土体被动滑裂面特征试验研究[J]. 岩土力学, 2021, 42(7): 1839-1849.
[6] 刘志鹏, 孔纲强, 文磊, 王志华, 秦红玉, . 砂土地基中倾斜螺旋桩群桩上拔与水平 承载特性模型试验[J]. 岩土力学, 2021, 42(7): 1944-1950.
[7] 饶佩森, 李丹, 孟庆山, 王新志, 付金鑫, 雷学文, . 循环荷载作用下钙质砂地基土压力分布特征研究[J]. 岩土力学, 2021, 42(6): 1579-1586.
[8] 郭明伟, 马欢, 杨忠明, 王斌, 董学超, 王水林, . 常泰长江大桥施工阶段大型沉井基础沉降变形分析[J]. 岩土力学, 2021, 42(6): 1705-1712.
[9] 沈扬, 冯照雁, 邓珏, 陈锴嘉, 许俊红, . 南海珊瑚砂地基承载力模型试验研究[J]. 岩土力学, 2021, 42(5): 1281-1290.
[10] 张玉, 李大勇, 梁昊, 张雨坤, . 风电空心锥形基础水平承载特性 及土压力分布规律模型试验研究[J]. 岩土力学, 2021, 42(5): 1404-1412.
[11] 陶志刚, 任树林, 郝宇, 李强, 付强, 何满潮, . 层状反倾边坡破坏机制及NPR锚索控制效果 物理模型试验[J]. 岩土力学, 2021, 42(4): 976-990.
[12] 雷华阳, 许英刚, 缪姜燕, 刘旭. 动渗耦合作用下软黏土动力特性试验研究[J]. 岩土力学, 2021, 42(3): 601-610.
[13] 张纪蒙, 张陈蓉, 张凯, . 砂土中大直径单桩水平循环加载模型试验研究[J]. 岩土力学, 2021, 42(3): 783-789.
[14] 胡利文, 刘志军, . 真空预压加固土体变形机制分析[J]. 岩土力学, 2021, 42(3): 790-799.
[15] 郑俊杰, 邵安迪, 谢明星, 景丹, . 不同填土宽度下设置EPS垫层挡土墙试验研究[J]. 岩土力学, 2021, 42(2): 324-332.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[2] 梁桂兰,徐卫亚,谈小龙. 基于熵权的可拓理论在岩体质量评价中的应用[J]. , 2010, 31(2): 535 -540 .
[3] 马文涛. 基于灰色最小二乘支持向量机的边坡位移预测[J]. , 2010, 31(5): 1670 -1674 .
[4] 于琳琳,徐学燕,邱明国,闫自利,李鹏飞. 冻融作用对饱和粉质黏土抗剪性能的影响[J]. , 2010, 31(8): 2448 -2452 .
[5] 王 伟,刘必灯,周正华,王玉石,赵纪生. 刚度和阻尼频率相关的等效线性化方法[J]. , 2010, 31(12): 3928 -3933 .
[6] 王海波,徐 明,宋二祥. 基于硬化土模型的小应变本构模型研究[J]. , 2011, 32(1): 39 -43 .
[7] 曹光栩,宋二祥,徐 明. 山区机场高填方地基工后沉降变形简化算法[J]. , 2011, 32(S1): 1 -5 .
[8] 刘华丽 ,朱大勇 ,钱七虎 ,李宏伟. 边坡三维端部效应分析[J]. , 2011, 32(6): 1905 -1909 .
[9] 刘年平 ,王宏图 ,袁志刚 ,刘竟成. 砂土液化预测的Fisher判别模型及应用[J]. , 2012, 33(2): 554 -557 .
[10] 王卫东 ,李永辉 ,吴江斌 . 超长灌注桩桩-土界面剪切模型及其有限元模拟[J]. , 2012, 33(12): 3818 -3824 .