岩土力学 ›› 2022, Vol. 43 ›› Issue (10): 2643-2654.doi: 10.16285/j.rsm.2021.2027

• 基础理论与实验研究 •    下一篇

MICP联合纤维加筋改性钙质砂的动力特性研究

王瑞,泮晓华,唐朝生,吕超,王殿龙,董志浩,施斌   

  1. 南京大学 地球科学与工程学院,江苏 南京 210023
  • 收稿日期:2021-12-02 修回日期:2022-06-15 出版日期:2022-10-19 发布日期:2022-10-17
  • 通讯作者: 唐朝生,男,1980年生,博士,教授,博士生导师,主要从事工程地质与环境岩土工程研究。E-mail: tangchaosheng@nju.edu.cn E-mail:wr@smail.nju.edu.cn
  • 作者简介:王瑞,男,1997年生,博士研究生,主要从事微生物地质工程研究。
  • 基金资助:
    国家杰出青年科学基金(No. 41925012);国家自然科学基金(No. 41902271,No. 42007244);江苏省自然科学基金(No. BK20211087)。

Dynamic behaviors of MICP and fiber-treated calcareous sand under dynamic triaxial testing

WANG Rui, PAN Xiao-hua, TANG Chao-sheng, LÜ Chao, WANG Dian-long, DONG Zhi-hao, SHI Bin   

  1. School of Earth Sciences and Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
  • Received:2021-12-02 Revised:2022-06-15 Online:2022-10-19 Published:2022-10-17
  • Supported by:
    This work was supported by the National Science Foundation for Outstanding Young Scholars (41925012), the National Natural Science Foundation of China (41902271, 42007244) and the Natural Science Foundation of Jiangsu Province (BK20211087).

摘要:

为了提高我国南海钙质砂地基的抗液化性能,提出利用微生物诱导碳酸钙沉积(MICP)技术联合纤维加筋技术对钙质砂进行改性处理。通过开展动三轴试验,对比分析了改性前后钙质砂试样的动应变、动孔压、应力−应变滞回曲线以及动弹性模量的发展规律和演化特征,并结合扫描电镜(SEM)试验探究了MICP和纤维加筋技术对钙质砂的联合改性机制。研究结果表明:(1)MICP技术可以明显改善钙质砂试样的抗变形与抗液化性能,相比于未胶结处理试样,仅MICP处理试样的动应变和动孔压分别降低了95.74% 和 92.46%;(2)纤维的掺入进一步提升了MICP的改性效果,相比于仅MICP处理试样,MICP和纤维加筋联合处理试样的动应变和动孔压分别降低了 74.32%和 74.18%;(3)MICP 和纤维加筋技术通过减轻试样在循环荷载作用下的循环活动强度和能量耗散、提高试样的动弹性模量和减小动弹性模量的衰减速率,从而实现试样抗变形与抗液化性能的显著提高;(4)SEM 试验分析结果表明,MICP 与纤维对钙质砂动力特性的改善具有协同作用。纤维的掺入为细菌提供了更多的附着场所,促进了碳酸钙晶体的生成量,该部分碳酸钙不仅增加了颗粒间的胶结强度,同时也将纤维固定在砂颗粒上增强了纤维网的约束作用。

关键词: 钙质砂, 微生物诱导碳酸钙沉积(MICP), 纤维加筋, 动三轴试验, 地基液化, 扫描电镜(SEM)

Abstract:

To improve the liquefaction resistance of calcareous sand foundations, microbially induced calcium carbonate precipitation (MICP) technology combined with fiber reinforcement technology was proposed to treat the calcareous sand in the South China Sea. Based on dynamic triaxial tests, the dynamic behaviors of MICP and fiber-treated calcareous sand were studied. The dynamic strain, dynamic pore pressure, cyclic stress-strain response and dynamic elastic modulus were analyzed. Then, the strengthening mechanism of MICP and fiber on the mechanical properties of the treated calcareous sand was explored from the microscopic point of view, based on the scanning electron microscope (SEM) test results. The results show that: (i) MICP could improve the deformation resistance and liquefaction resistance of calcareous sands. Compared with the untreated calcareous sand samples, the dynamic strain and dynamic pore pressure of calcareous sand treated by MICP decreased by 95.74% and 92.46%, respectively. (ii) The addition of fibers further improved the reinforcement effect of MICP. Compared to the MICP-treated samples, the dynamic strain and dynamic pore pressure of MICP and fiber-treated samples decreased by 74.32% and 74.18%, respectively. (iii) MICP and fiber reinforcement technologies improved the deformation resistance and liquefaction resistance of calcareous sand subjected to cyclic loading by reducing the cyclic activity strength and energy dissipation, increasing the dynamic elastic modulus and reducing the decay rate of the dynamic elastic modulus. (iv) The results of the SEM test showed that MICP and fiber reinforcement had a synergistic effect on the improvement of the mechanical properties of calcareous sands. The incorporation of fibers provided more spots for bacterial adhesion and promoted the formation of calcium carbonate crystals, which not only increased the bonding strength between sand particles, but also enhanced the restraint of fiber nets by fixing fibers and sand particles together.

Key words: calcareous sand, microbially induced calcium carbonate precipitation (MICP), fiber reinforcement, dynamic triaxial test, ground liquefaction, scanning electron microscope (SEM)

中图分类号: 

  • TU 441
[1] 魏丽, 柴寿喜, 刘著, 王沛, 李芳, . 以扫描电镜与核磁共振指标评价冻融纤维 加筋土的抗压强度[J]. 岩土力学, 2022, 43(S2): 163-170.
[2] 张涛麟, 耿汉生, 许宏发, 莫家权, 林一帆, 马林建. 钙质砂注浆加固材料制备及固结体性能试验研究[J]. 岩土力学, 2022, 43(S2): 327-336.
[3] 曾召田, 梁珍, 孙凌云, 付慧丽, 范理云, 潘斌, 于海浩, . 水泥胶结钙质砂导热系数的影响因素试验研究[J]. 岩土力学, 2022, 43(S1): 88-96.
[4] 申嘉伟, 周博, 付茹, 库泉, 汪华斌, . 钙质砂单颗粒破碎强度和模式的试验研究[J]. 岩土力学, 2022, 43(S1): 312-320.
[5] 高敏, 何绍衡, 夏唐代, 丁智, 王新刚, 张琼方, . 复杂应力路径下钙质砂颗粒破碎及抗剪强度特性[J]. 岩土力学, 2022, 43(S1): 321-330.
[6] 覃东来, 孟庆山, 阎钶, 覃庆龙, 黄孝芳, 饶佩森, . 钙质砂砾剪切强度及变形的粒径效应试验研究[J]. 岩土力学, 2022, 43(S1): 331-338.
[7] 张小燕, 张益, 张晋勋, 魏凯园, 王宁, . 含橡胶纤维钙质砂的渗透和固结特性试验研究[J]. 岩土力学, 2022, 43(8): 2115-2122.
[8] 柴源, 牛勇, 吕海波, . 水泥胶结钙质砂地层中单桩竖向承载特性试验研究[J]. 岩土力学, 2022, 43(8): 2203-2212.
[9] 王嘉璐, 张升, 童晨曦, 戴邵衡, 黎章. 基于染色标定的钙质砂颗粒破碎级配 转移矩阵试验研究[J]. 岩土力学, 2022, 43(8): 2222-2232.
[10] 陈宾, 邓坚, 胡杰铭, 张建林, 张涛, . 钙质砂一维蠕变分形破碎特性宏微观试验研究[J]. 岩土力学, 2022, 43(7): 1781-1790.
[11] 陈瑞敏, 简文彬, 张小芳, 方泽化, . CSFG-FR协同作用改良淤泥固化土性能试验研究[J]. 岩土力学, 2022, 43(4): 1020-1030.
[12] 王燕星, 李驰, 葛晓东, 高利平, . 黄河流域内蒙古段砒砂岩风化土微生物 矿化改良的试验研究[J]. 岩土力学, 2022, 43(3): 708-718.
[13] 胡聪, 龙志林, 旷杜敏, 龚钊卯, 俞飘旖, 徐国斌. 基于多视角二维图像的钙质砂颗粒三维重构方法[J]. 岩土力学, 2022, 43(3): 761-768.
[14] 肖瑶, 邓华锋, 李建林, 程雷, 朱文羲. 海水环境下巴氏芽孢杆菌驯化 及钙质砂固化效果研究[J]. 岩土力学, 2022, 43(2): 395-404.
[15] 魏丽, 柴寿喜, 张琳, 李瑶, . 冻融作用下三类纤维加筋固化土的抗压抗拉性能[J]. 岩土力学, 2022, 43(12): 3241-3248.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .
[2] 张文杰,陈云敏. 垃圾填埋场抽水试验及降水方案设计[J]. , 2010, 31(1): 211 -215 .
[3] 宫伟力,安里千,赵海燕,毛灵涛. 基于图像描述的煤岩裂隙CT图像多尺度特征[J]. , 2010, 31(2): 371 -376 .
[4] 王明年,郭 军,罗禄森,喻 渝,杨建民,谭忠盛. 高速铁路大断面黄土隧道深浅埋分界深度研究[J]. , 2010, 31(4): 1157 -1162 .
[5] 谭峰屹,姜志全,李仲秋,颜惠和. 附加质量法在昆明新机场填料压实密度检测中的应用研究[J]. , 2010, 31(7): 2214 -2218 .
[6] 柴 波,殷坤龙,肖拥军. 巴东新城区库岸斜坡软弱带特征[J]. , 2010, 31(8): 2501 -2506 .
[7] 杨召亮,孙冠华,郑 宏. 基于潘氏极大值原理的边坡稳定性的整体分析法[J]. , 2011, 32(2): 559 -563 .
[8] 王光进,杨春和,张 超,马洪岭,孔祥云,侯克鹏. 超高排土场的粒径分级及其边坡稳定性分析研究[J]. , 2011, 32(3): 905 -913 .
[9] 胡海军,蒋明镜,赵 涛,彭建兵,李 红. 制样方法对重塑黄土单轴抗拉强度影响的初探[J]. , 2009, 30(S2): 196 -199 .
[10] 李 敏,柴寿喜,王晓燕,魏 丽. 以强度增长率评价麦秸秆加筋盐渍土的加筋效果[J]. , 2011, 32(4): 1051 -1056 .