岩土力学 ›› 2022, Vol. 43 ›› Issue (S2): 163-170.doi: 10.16285/j.rsm.2020.1739

• 基础理论与实验研究 • 上一篇    下一篇

以扫描电镜与核磁共振指标评价冻融纤维 加筋土的抗压强度

魏丽1, 2,柴寿喜1,刘著1,王沛1,李芳3   

  1. 1. 天津城建大学 天津市软土特性与工程环境重点实验室,天津 300384;2. 兰州大学 西部灾害与环境力学教育部重点实验室,甘肃 兰州 730000; 3. 立方通达实业(天津)有限公司,天津 301700
  • 收稿日期:2020-11-22 修回日期:2021-02-24 出版日期:2022-10-10 发布日期:2022-10-03
  • 作者简介:魏丽,女,1979年生,博士,副教授,主要从事盐渍土改性固化及加筋土方面的研究工作。
  • 基金资助:
    天津市科技支撑重点项目(No.19YFZCSF00820);天津市科技计划项目(No.20YDTPJC00930)

Evaluation on compressive strength of fiber reinforced soil under freeze-thaw cycles by scanning election microscopy and nuclear magnetic resonance

WEI Li1, 2, CHAI Shou-xi1, LIU Zhu1, WANG Pei1, LI Fang3   

  1. 1. Tianjin Key Laboratory of Soft Soil Characteristics and Engineering Environment, Tianjin Chengjian University, Tianjin 300384, China; 2. Key Laboratory of Mechanics on Disaster and Environment in Western China, Ministry of Education, Lanzhou University, Lanzhou, Gansu 730000, China; 3. Lifetime Industrial (Tianjin) Co., Ltd., Tianjin 301700, China
  • Received:2020-11-22 Revised:2021-02-24 Online:2022-10-10 Published:2022-10-03
  • Supported by:
    This work was supported by the Key Technologies R & D Program of Tianjin(19YFZCSF00820) and the Science and Technology Plan Project of Tianjin (20YDTPJC00930).

摘要: 冻融循环破坏了土的结构,降低了土的力学性能。完成了石灰固化土与纤维加筋固化土的冻融试验、无侧限抗压试验、扫描电镜(scanning election microscopy,简称SEM)观察与核磁共振(nuclear magnetic resonance,简称NMR)测试,探讨冻融循环对土的强度与微结构的破坏作用,以微结构指标评价土的抗压强度变化。结果表明:石灰固化土与纤维加筋固化土的抗压强度均随冻融次数的增加而降低,土的冻融破坏过程经历了降幅较大、降幅较小、降幅平缓与强度稳定4个阶段;含水率越大,冻融次数越多,纤维对土的增强效果越明显;掺加纤维延缓了微裂隙的形成与发展,降低了裂隙的贯通率;随着冻融次数的增加,孔隙率与孔径均增大,冻胀使得部分小孔隙联通为中孔隙和大孔隙。纤维对土的空间约束作用与筋土摩擦作用使得土的孔隙率与孔隙分布特征变化较小,纤维加筋固化土的强度与抗冻融性能优于固化土。

关键词: 冻融循环, 纤维加筋土, 抗压强度, 孔隙率, 孔隙分布

Abstract: Freeze-thaw cycles destroy the structure of soil, resulting in a reduction in mechanical properties of soil. A series of tests on lime-soil and fiber reinforced lime-soil is completed, including freeze-thaw test, the unconfined compressive test, scanning election microscopy (SEM) test, and nuclear magnetic resonance (NMR) test. Based on the test results, the effect of freeze-thaw cycles on soil strength and microstructure index is discussed. The results show that the compressive strength of lime-soil and fiber reinforced lime-soil decrease with the increase of freeze-thaw number, and the four stages for soil strength variation are identified in soil failure process, i.e., large reduction, small reduction, slow reduction and stability. In the case of high moisture content and frequent freezing and thawing, it is more conducive to the reinforcement of soil by fibers. The addition of fiber delays the formation and development of cracks in soil, reducing the connection of cracks. With the increase of freeze-thaw number, the porosity and the pore diameter increase, as a result, a part of small pores connect into medium pores and large pores. The porosity and pore distributions of soil vary slightly under freeze-thaw cycles because of the spatial restraint effect of fiber on soil and the friction between fiber and soil, which result in the strength and freeze-thaw resistance of fiber reinforced lime-soil is better than that of lime-soil.

Key words: freeze-thaw cycles, fiber reinforced soil, unconfined compressive strength, porosity, pore distribution

中图分类号: 

  • TU411
[1] 张涛麟, 耿汉生, 许宏发, 莫家权, 林一帆, 马林建. 钙质砂注浆加固材料制备及固结体性能试验研究[J]. 岩土力学, 2022, 43(S2): 327-336.
[2] 李丽华, 方亚男, 肖衡林, 李文涛, 曹毓, 徐可, . 赤泥复合物固化/稳定化镉污染土特性研究[J]. 岩土力学, 2022, 43(S1): 193-202.
[3] 张津津, 李博, 余闯, 张茂雨, . 矿渣−粉煤灰地聚合物固化砂土力学特性研究[J]. 岩土力学, 2022, 43(9): 2421-2430.
[4] 刘成禹, 郑道哲, 张向向, 陈成海, 曹洋兵, . 冻融温变速率对岩石受载特性的影响规律[J]. 岩土力学, 2022, 43(8): 2071-2082.
[5] 周实际, 杜延军, 倪浩, 孙慧洋, 李江山, 杨玉玲, . 压实度对铁盐稳定化砷、锑污染土特性 的影响及机制研究[J]. 岩土力学, 2022, 43(2): 432-442.
[6] 李敏, 于禾苗, 杜红普, 曹保宇, 柴寿喜, . 冻融循环对二灰和改性聚乙烯醇 固化盐渍土力学性能的影响[J]. 岩土力学, 2022, 43(2): 489-498.
[7] 李燕, 李同录, 侯晓坤, 李华, 张杰, . 用孔隙分布曲线预测压实黄土非饱和渗透曲 线及其适用范围的探讨[J]. 岩土力学, 2021, 42(9): 2395-2404.
[8] 葛苗苗, 李宁, 盛岱超, 朱才辉, PINEDA Jubert, . 水力耦合作用下非饱和压实黄土 细观变形机制试验研究[J]. 岩土力学, 2021, 42(9): 2437-2448.
[9] 乔趁, 王宇, 宋正阳, 李长洪, 侯志强, . 饱水裂隙花岗岩周期冻胀力演化特性试验研究[J]. 岩土力学, 2021, 42(8): 2141-2150.
[10] 邓申缘, 姜清辉, 商开卫, 井向阳, 熊峰, . 高温对花岗岩微结构及渗透性演化机制影响分析[J]. 岩土力学, 2021, 42(6): 1601-1611.
[11] 平琦, 苏海鹏, 马冬冬, 张号, 张传亮, . 不同高温作用后石灰岩物理与动力特性试验研究[J]. 岩土力学, 2021, 42(4): 932-942.
[12] 杨爱武, 徐彩丽, 郎瑞卿, 王韬, . 冻融循环作用下城市污泥固化土三维力学 特性及其破坏准则[J]. 岩土力学, 2021, 42(4): 963-975.
[13] 余莉, 彭海旺, 李国伟, 张钰, 韩子豪, 祝瀚政. 花岗岩高温−水冷循环作用下的试验研究[J]. 岩土力学, 2021, 42(4): 1025-1035.
[14] 陈猛, 崔秀文, 颜鑫, 王浩, 王二磊. 岩石−钢纤维混凝土复合层抗压强度预测模型[J]. 岩土力学, 2021, 42(3): 638-646.
[15] 吴俊, 征西遥, 杨爱武, 李延波. 矿渣−粉煤灰基地质聚合物固化淤泥质黏土的抗压强度试验研究[J]. 岩土力学, 2021, 42(3): 647-655.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .