岩土力学 ›› 2022, Vol. 43 ›› Issue (S2): 163-170.doi: 10.16285/j.rsm.2020.1739
魏丽1, 2,柴寿喜1,刘著1,王沛1,李芳3
WEI Li1, 2, CHAI Shou-xi1, LIU Zhu1, WANG Pei1, LI Fang3
摘要: 冻融循环破坏了土的结构,降低了土的力学性能。完成了石灰固化土与纤维加筋固化土的冻融试验、无侧限抗压试验、扫描电镜(scanning election microscopy,简称SEM)观察与核磁共振(nuclear magnetic resonance,简称NMR)测试,探讨冻融循环对土的强度与微结构的破坏作用,以微结构指标评价土的抗压强度变化。结果表明:石灰固化土与纤维加筋固化土的抗压强度均随冻融次数的增加而降低,土的冻融破坏过程经历了降幅较大、降幅较小、降幅平缓与强度稳定4个阶段;含水率越大,冻融次数越多,纤维对土的增强效果越明显;掺加纤维延缓了微裂隙的形成与发展,降低了裂隙的贯通率;随着冻融次数的增加,孔隙率与孔径均增大,冻胀使得部分小孔隙联通为中孔隙和大孔隙。纤维对土的空间约束作用与筋土摩擦作用使得土的孔隙率与孔隙分布特征变化较小,纤维加筋固化土的强度与抗冻融性能优于固化土。
中图分类号:
[1] | 张涛麟, 耿汉生, 许宏发, 莫家权, 林一帆, 马林建. 钙质砂注浆加固材料制备及固结体性能试验研究[J]. 岩土力学, 2022, 43(S2): 327-336. |
[2] | 李丽华, 方亚男, 肖衡林, 李文涛, 曹毓, 徐可, . 赤泥复合物固化/稳定化镉污染土特性研究[J]. 岩土力学, 2022, 43(S1): 193-202. |
[3] | 张津津, 李博, 余闯, 张茂雨, . 矿渣−粉煤灰地聚合物固化砂土力学特性研究[J]. 岩土力学, 2022, 43(9): 2421-2430. |
[4] | 刘成禹, 郑道哲, 张向向, 陈成海, 曹洋兵, . 冻融温变速率对岩石受载特性的影响规律[J]. 岩土力学, 2022, 43(8): 2071-2082. |
[5] | 周实际, 杜延军, 倪浩, 孙慧洋, 李江山, 杨玉玲, . 压实度对铁盐稳定化砷、锑污染土特性 的影响及机制研究[J]. 岩土力学, 2022, 43(2): 432-442. |
[6] | 李敏, 于禾苗, 杜红普, 曹保宇, 柴寿喜, . 冻融循环对二灰和改性聚乙烯醇 固化盐渍土力学性能的影响[J]. 岩土力学, 2022, 43(2): 489-498. |
[7] | 李燕, 李同录, 侯晓坤, 李华, 张杰, . 用孔隙分布曲线预测压实黄土非饱和渗透曲 线及其适用范围的探讨[J]. 岩土力学, 2021, 42(9): 2395-2404. |
[8] | 葛苗苗, 李宁, 盛岱超, 朱才辉, PINEDA Jubert, . 水力耦合作用下非饱和压实黄土 细观变形机制试验研究[J]. 岩土力学, 2021, 42(9): 2437-2448. |
[9] | 乔趁, 王宇, 宋正阳, 李长洪, 侯志强, . 饱水裂隙花岗岩周期冻胀力演化特性试验研究[J]. 岩土力学, 2021, 42(8): 2141-2150. |
[10] | 邓申缘, 姜清辉, 商开卫, 井向阳, 熊峰, . 高温对花岗岩微结构及渗透性演化机制影响分析[J]. 岩土力学, 2021, 42(6): 1601-1611. |
[11] | 平琦, 苏海鹏, 马冬冬, 张号, 张传亮, . 不同高温作用后石灰岩物理与动力特性试验研究[J]. 岩土力学, 2021, 42(4): 932-942. |
[12] | 杨爱武, 徐彩丽, 郎瑞卿, 王韬, . 冻融循环作用下城市污泥固化土三维力学 特性及其破坏准则[J]. 岩土力学, 2021, 42(4): 963-975. |
[13] | 余莉, 彭海旺, 李国伟, 张钰, 韩子豪, 祝瀚政. 花岗岩高温−水冷循环作用下的试验研究[J]. 岩土力学, 2021, 42(4): 1025-1035. |
[14] | 陈猛, 崔秀文, 颜鑫, 王浩, 王二磊. 岩石−钢纤维混凝土复合层抗压强度预测模型[J]. 岩土力学, 2021, 42(3): 638-646. |
[15] | 吴俊, 征西遥, 杨爱武, 李延波. 矿渣−粉煤灰基地质聚合物固化淤泥质黏土的抗压强度试验研究[J]. 岩土力学, 2021, 42(3): 647-655. |
|