水泥胶结钙质砂,导热系数,影响因素,热探针法,计算模型 ," /> 水泥胶结钙质砂,导热系数,影响因素,热探针法,计算模型 ,"/>
岩土力学 ›› 2022, Vol. 43 ›› Issue (S1): 88-96.doi: 10.16285/j.rsm.2021.0642
曾召田1,梁珍1,孙凌云2,付慧丽1, 3,范理云1, 2,潘斌1,于海浩1
ZENG Zhao-tian1, LIANG Zhen1, SUN Ling-yun2, FU Hui-li1, 3, FAN Li-yun2, PAN Bin1, YU Hai-hao1
摘要:
为了探讨水泥掺量Ps、水灰比W/C(W为水质量,C为水泥质量)、含水率w 等因素对水泥胶结钙质砂导热系数l的影响规律,基于热探针法测定了不同试验条件下水泥胶结钙质砂的导热系数,分析了各因素影响下导热系数的变化规律,运用电镜扫描技术阐释了上述变化趋势发生的微观机制;在此基础上,提出了考虑水泥掺量、水灰比、含水率3个因素共同影响的水泥胶结钙质砂导热系数计算模型。试验结果表明:(1)水泥胶结钙质砂的导热系数l显著大于天然钙质砂的l值,随着水泥掺量Ps的增加,l值递增,但增长幅度依次递减;(2)水泥胶结钙质砂导热系数l随含水率w 的增加而递增,呈正相关关系;水灰比W/C越大,l反而越小;(3)水泥胶结钙质砂内微孔隙大小、数量的变化从本质上决定了其宏观热传导特性,凝胶状水化产物连续填充其内部孔隙,引起其孔隙率降低,改善砂样内部传热,宏观表现为其导热系数l随着胶结程度的增加而递增;(4)综合考虑Ps、w、W/C的3个因素共同影响的水泥胶结钙质砂导热系数计算模型具有很好的适用性,相关系数R2 = 0.916 4。
中图分类号:
[1] | 欧孝夺, 甘雨, 潘鑫, 江杰, 覃英宏, . 重塑膨胀岩热传导性能及影响因素试验研究[J]. 岩土力学, 2022, 43(S1): 367-374. |
[2] | 金宗川, 王雪晴, 乌效鸣, 彭赟, . 土壤热参数及其影响因素测试分析[J]. 岩土力学, 2022, 43(5): 1335-1340. |
[3] | 杨志浩, 岳祖润, 冯怀平, 叶朝良, 周江涛, 介少龙, . 重载铁路基床表层级配碎石渗透特性试验研究[J]. 岩土力学, 2021, 42(1): 193-202. |
[4] | 徐毅青, 邓绍玉, 葛琦. 锚索预应力初期与长期损失的预测模型研究[J]. 岩土力学, 2020, 41(5): 1663-1669. |
[5] | 杨军, 魏庆龙, 王亚军, 高玉兵, 侯世林, 乔博文, . 切顶卸压无煤柱自成巷顶板变形 机制及控制对策研究[J]. 岩土力学, 2020, 41(3): 989-998. |
[6] | 刘希灵, 刘周, 李夕兵, 韩梦思. 单轴压缩与劈裂荷载下灰岩声发射b值特性研究[J]. 岩土力学, 2019, 40(S1): 267-274. |
[7] | 谈云志, 彭帆, 钱芳红, 孙德安, 明华军, . 石墨−膨润土缓冲材料的最优配置方法[J]. 岩土力学, 2019, 40(9): 3387-3396. |
[8] | 尹黎阳, 唐朝生, 谢约翰, 吕超, 蒋宁俊, 施斌, . 微生物矿化作用改善岩土材料性能的影响因素[J]. 岩土力学, 2019, 40(7): 2525-2546. |
[9] | 郑光, 许强, 彭双麒. 岩质滑坡−碎屑流的运动距离计算公式研究[J]. 岩土力学, 2019, 40(12): 4897-4906. |
[10] | 胡明鉴, 张晨阳, 崔翔, 李焜耀, 唐健健, . 钙质砂中毛细水高度与影响因素试验研究[J]. 岩土力学, 2019, 40(11): 4157-4164. |
[11] | 钟祖良, 别聪颖, 范一飞, 刘新荣, 罗亦琦, 涂义亮, . 土石混合体注浆扩散机制及影响因素试验研究[J]. 岩土力学, 2019, 40(11): 4194-4202. |
[12] | 王丽艳, 巩文雪, 曹晓婷, 姜朋明, 王炳辉. 砾钢渣抗液化特性试验研究[J]. 岩土力学, 2019, 40(10): 3741-3750. |
[13] | 谢敬礼,马利科,高玉峰,曹胜飞,刘月妙. 北山花岗岩岩屑-膨润土混合材料导热性能研究[J]. , 2018, 39(8): 2823-2828. |
[14] | 石泉彬,杨 平,于 可,汤国毅,. 冻土与结构接触面次峰值冻结强度试验研究[J]. , 2018, 39(6): 2025-2034. |
[15] | 夏才初,吕志涛,黄继辉,李 强, . 寒区隧道围岩最大冻结深度计算的半解析方法[J]. , 2018, 39(6): 2145-2154. |
|