岩土力学 ›› 2022, Vol. 43 ›› Issue (S1): 367-374.doi: 10.16285/j.rsm.2020.1102
欧孝夺1, 2, 3,甘雨1,潘鑫1,江杰1, 2, 3,覃英宏1, 2, 3
OU Xiao-duo1, 2, 3, GAN Yu1, PAN Xin1, JIANG Jie1, 2, 3, QIN Ying-hong1, 2, 3
摘要: 以南宁第三系膨胀泥岩为研究对象,采用热探针法研究含水率、干密度、温度及体积变形率对重塑膨胀岩试样导热系数的影响。研究表明:重塑膨胀岩的导热系数随着含水率、干密度的增加而升高,当含水率从10.4%上升至21.9%时,其导热系数最高上升了135.7%,当干密度从1.50 g/cm3增加到2.00 g/cm3时,其导热系数最高上升了133.9%,主要原因是含水率的增加减少了土中空气的热阻作用,干密度的增加使土颗粒之间的接触更为紧密;在潜热传输的作用下,重塑膨胀岩的导热系数随温度的增长而升高,土颗粒在温度的影响下粒径不断增大并发生聚集,为潜热传输提供了有利的条件,重塑膨胀岩导热系数随温度的增长呈现缓慢增长和迅速增长2个不同的阶段;重塑膨胀岩的导热系数随体积变形率的增加而降低,当变形率从0.5%增加到5%时,膨胀岩的导热系数降幅在5.7%~29.5%之间,这是由于吸水膨胀后膨胀岩试样更为松散,土颗粒之间的接触减少。
中图分类号:
[1] | 汤华, 严松, 杨兴洪, 吴振君, . 差异含水率下全风化混合花岗岩抗剪强度 与微观结构试验研究[J]. 岩土力学, 2022, 43(S1): 55-66. |
[2] | 曾召田, 梁珍, 孙凌云, 付慧丽, 范理云, 潘斌, 于海浩, . 水泥胶结钙质砂导热系数的影响因素试验研究[J]. 岩土力学, 2022, 43(S1): 88-96. |
[3] | 张磊, 田苗苗, 卢硕, 李明雪, 李菁华, . 不同含水率煤体液氮致裂渗透率变化规律 及应力敏感性分析[J]. 岩土力学, 2022, 43(S1): 107-116. |
[4] | 高磊, 韩川, 黄坚, 王洋, 周乐, . 基于BOTDR的能源桩现场试验与承载特性分析[J]. 岩土力学, 2022, 43(S1): 117-126. |
[5] | 刘杰, 崔瑜瑜, 卢正, 姚海林, . 分散土分散性影响因素及其判别方法初探[J]. 岩土力学, 2022, 43(S1): 237-244. |
[6] | 汪洋, 陈文化. 基于裂隙形状函数的自然环境高温下花岗岩 裂隙尖部非线性温度场[J]. 岩土力学, 2022, 43(S1): 267-274. |
[7] | 潘振辉, 肖涛, 李萍, . 压实度与制样含水率对压实黄土微结 构及水力特性的影响[J]. 岩土力学, 2022, 43(S1): 357-366. |
[8] | 杨磊, 涂冬媚, 朱启银, 吴则祥, 余闯, . 考虑变温幅值影响的颗粒循环热 固结离散元法试验研究[J]. 岩土力学, 2022, 43(S1): 591-600. |
[9] | 张婵青, 何凤飞, 姜顺航, 曾子真, 熊峰, 陈江, . 土体含水率监测的移动点热源法研究[J]. 岩土力学, 2022, 43(7): 2025-2034. |
[10] | 王鲁男, 陶传奇, 尹晓萌, 韩杰, 杨磊, 张甘平, . 单轴压缩下富有机质油页岩变形场与能量 演化特征研究[J]. 岩土力学, 2022, 43(6): 1557-1570. |
[11] | 金宗川, 王雪晴, 乌效鸣, 彭赟, . 土壤热参数及其影响因素测试分析[J]. 岩土力学, 2022, 43(5): 1335-1340. |
[12] | 郑文红, 施天威, 潘一山, 罗浩, 吕祥锋, . 含水率对岩石电荷感应信号影响规律研究[J]. 岩土力学, 2022, 43(3): 659-668. |
[13] | 王海波, 吕伟华, 武荘, 朱文波, . 不同温度应力路径下饱和黏土剪切特性[J]. 岩土力学, 2022, 43(3): 679-687. |
[14] | 侯乐乐, 翁效林, 李 林, 周容名, . 考虑含水率影响的结构性黄土临界状态模型[J]. 岩土力学, 2022, 43(3): 737-748. |
[15] | 章涛, 施建勇, 吴珣, 韩尚宇, 纪晓磊, 张慧华, . 单井注水改变填埋场中垃圾土温度的模拟[J]. 岩土力学, 2022, 43(2): 499-510. |
|