岩土力学 ›› 2022, Vol. 43 ›› Issue (S1): 357-366.doi: 10.16285/j.rsm.2021.0076

• 基础理论与实验研究 • 上一篇    下一篇

压实度与制样含水率对压实黄土微结 构及水力特性的影响

潘振辉1, 2,肖涛1, 2,李萍1, 2   

  1. 1. 西北大学 大陆动力学国家重点实验室,陕西 西安 710069;2. 西北大学 地质学系,陕西 西安 710069
  • 收稿日期:2021-01-15 修回日期:2022-03-10 出版日期:2022-06-30 发布日期:2022-07-14
  • 通讯作者: 肖涛,男,1994年生,博士,主要从事黄土微结构与力学特性方面的研究。E-mail: andyshaw01001@163.com E-mail:193445532@qq.com
  • 作者简介:潘振辉,男,1999年生,博士研究生,主要从事黄土力学与工程方面的研究。
  • 基金资助:
    国家自然科学基金资助项目(No.42007251);陕西省黄土力学与工程重点实验室开放基金(No.203131900007);中国博士后基金项目(No.2019M653883XB)。

Influences of compaction degree and molding water content on microstructure and hydraulic characteristics of compacted loess

PAN Zhen-hui1, 2, XIAO Tao1, 2, LI Ping1, 2   

  1. 1. State Key Laboratory of Continental Dynamics, Northwest University, Xi’an, Shaanxi 710069, China; 2. Department of Geology, Northwest University, Xi’an, Shaanxi 710069, China
  • Received:2021-01-15 Revised:2022-03-10 Online:2022-06-30 Published:2022-07-14
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(42007251), the Shaanxi Key Laboratory of Loess Mechanics and Engineering (203131900007) and China Postdoctoral Science Foundation(2019M653883XB).

摘要: 压实黄土的水力特性受微结构控制,而微结构受制样条件影响。为探究制样条件对压实黄土微结构、饱和渗透系数与土−水特征曲线的影响及机制,对不同制样条件下制备的压实黄土试样开展了压汞试验、变水头渗透试验和土−水特征曲线的测定,获得了它们的孔径分布曲线、饱和渗透系数及其随渗透次数的变化和土−水特征曲线。结果表明:(1)制样含水率通过影响集粒尺寸改变试样中的中孔(2 000 nm < d ≤ 12 000 nm)、小孔(150 nm < d ≤ 2 000 nm)密度,制样含水率越大,中孔密度越小,小孔密度越大;而压实度主要影响集粒的排列进而影响试样中的中孔密度,压实度越大,中孔含量越小。(2)压实度和制样含水率影响着试样的初始饱和渗透系数。压实度较小(85%)时,试样的饱和渗透系数受结构坍塌影响随渗透次数的增大而减小;压实度较大(90%和94%)时,饱和渗透系数则受颗粒流失影响随渗透次数的增大而增大。 (3)压实度与制样含水率影响着水-土特征曲线。制样含水率主要影响试样的进气值和过渡段曲线的斜率,制样含水率越大,进气值越小,过渡段曲线的斜率越小,表明试样的持水性能越好;压实度则主要影响试样的进气值和饱和(质量)含水率,压实度越大,进气值越大,饱和(质量)含水率越小。

关键词: 压实黄土, 压实度, 制样含水率, 孔径分布曲线, 饱和渗透系数, 土?水特征曲线

Abstract: The hydraulic characteristics of compacted loess are controlled by its microstructure, which depends on the sample preparation conditions. This study aims to explore the influence of sample preparation conditions on microstructure, saturated permeability coefficient and soil-water characteristic curve (SWCC) of compacted loess. The mercury intrusion porosimetry (MIP) tests, variable head tests and SWCC tests were carried out on the specimens prepared under different conditions to obtain the pore-size distribution curves, saturated permeability coefficients and their variations with the seepage times, and SWCCs. The results show that: (1) The molding water content affects the density of mesopores (2 000 nm < d ≤ 12 000 nm) and that of micropores (150 nm < d ≤ 2 000 nm) by affecting the sizes of aggregates; the higher the molding water content of the specimen is, the smaller the density of mesopores is, and the larger the density of micropores is. The compaction degree has a significant effect on the density of mesopores by affecting the arrangement of aggregates; the greater the compaction degree is, the tighter the arrangement of aggregates is, and the smaller the mesopores content is. (2) The initial saturated permeability coefficient reduces with the increases of compaction degree and molding water content of compacted loess. When the compaction degree is small (85%), the saturated permeability coefficient of compacted loess decreases with the increase in number of seepage, and it rises with increasing number of seepage when the compaction degree is high (90% and 94%). (3) The molding water content mainly affects air entrance vaule (AEV) and the slope of the transition zone. The greater the molding water content is, the smaller the AEV is, and the slope of the transition zone is. Compaction degree mainly affects AEV and saturated moisture of specimens. The higher the compaction degree is, the higher the AEV is, and the smaller the saturated water content is.

Key words: compacted loess, compaction degree, molding water content, pore-size distribution curve, saturated permeability coefficient, soil-water characteristic curve

中图分类号: 

  • TU411
[1] 周兵红. 一种预测砂土土-水特征曲线的简化方法[J]. 岩土力学, 2022, 43(S1): 222-228.
[2] 王海曼, 倪万魁, 刘魁, . 延安压实黄土土−水特征曲线的快速预测方法[J]. 岩土力学, 2022, 43(7): 1845-1853.
[3] 高游, 李泽, 孙德安, 于海浩, 陈波, . 考虑初始孔隙比影响的单/双峰土−水特征曲线 模型研究[J]. 岩土力学, 2022, 43(6): 1441-1452.
[4] 王海曼, 倪万魁. 不同干密度压实黄土的饱和/非饱和渗透 系数预测模型[J]. 岩土力学, 2022, 43(3): 729-736.
[5] 周实际, 杜延军, 倪浩, 孙慧洋, 李江山, 杨玉玲, . 压实度对铁盐稳定化砷、锑污染土特性 的影响及机制研究[J]. 岩土力学, 2022, 43(2): 432-442.
[6] 李燕, 李同录, 侯晓坤, 李华, 张杰, . 用孔隙分布曲线预测压实黄土非饱和渗透曲 线及其适用范围的探讨[J]. 岩土力学, 2021, 42(9): 2395-2404.
[7] 葛苗苗, 李宁, 盛岱超, 朱才辉, PINEDA Jubert, . 水力耦合作用下非饱和压实黄土 细观变形机制试验研究[J]. 岩土力学, 2021, 42(9): 2437-2448.
[8] 刘丽, 吴羊, 李旭, 赵煜鑫, . 压实度对宽级配土水力特性的影响研究[J]. 岩土力学, 2021, 42(9): 2545-2555.
[9] 任华平, 刘希重, 宣明敏, 叶新宇, 李强, 张升, . 循环荷载作用下击实粉土累积塑性变形研究[J]. 岩土力学, 2021, 42(4): 1045-1055.
[10] 刘倩倩, 李舰, 蔡国庆, 李朋林, 李昕哲, . 全吸力范围的盐渍土持水特性的试验研究[J]. 岩土力学, 2021, 42(3): 713-722.
[11] 郝延周, 王铁行, 程磊, 金鑫, . 考虑干湿循环影响的压实黄土结构性本构关系[J]. 岩土力学, 2021, 42(11): 2977-2986.
[12] 郑方, 邵生俊, 佘芳涛, 袁浩, . 重塑黄土在不同基质吸力下的真三轴剪切试验[J]. 岩土力学, 2020, 41(S1): 156-162.
[13] 薛阳, 吴益平, 苗发盛, 李麟玮, 廖康, 张龙飞. 库水升降条件下考虑饱和渗透系数空间变异性的白水河滑坡渗流变形分析[J]. 岩土力学, 2020, 41(5): 1709-1720.
[14] 牛庚, 邵龙潭, 孙德安, 韦昌富, 郭晓霞, 徐华. 土−水特征曲线测量过程中孔隙分布的演化规律探讨[J]. 岩土力学, 2020, 41(4): 1195-1202.
[15] 陈可, 曹文贵, 陈贺. 基于孔隙胀缩的土−水特征曲线滞后增量模型[J]. 岩土力学, 2020, 41(10): 3236-3244.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .