岩土力学 ›› 2019, Vol. 40 ›› Issue (7): 2525-2546.doi: 10.16285/j.rsm.2018.0520

• 基础理论与实验研究 • 上一篇    下一篇

微生物矿化作用改善岩土材料性能的影响因素

尹黎阳1,唐朝生1, 2,谢约翰1,吕超1,蒋宁俊2, 3,施斌1   

  1. 1. 南京大学 地球科学与工程学院,江苏 南京 210023;2. 南京大学(苏州)高新技术研究院,江苏 苏州 215123; 3. 美国夏威夷大学 土木与环境工程系,美国夏威夷州 火奴鲁鲁 96822
  • 收稿日期:2018-04-02 出版日期:2019-07-11 发布日期:2019-07-06
  • 通讯作者: 唐朝生,男,1980年生,博士,教授,博士生导师,主要从事工程地质和环境岩土工程方面的研究工作。E-mail: tangchaosheng@nju.edu.cn E-mail:yinliyang123@smail.nju.edu.cn
  • 作者简介:尹黎阳,1991年生,硕士研究生,主要从事微生物岩土工程方面的研究工作
  • 基金资助:
    国家自然科学基金项目(No. 41572246,No. 41772280);优秀青年科学基金项目(No. 41322019);国家自然科学基金重点项目(No. 41230636);江苏省自然科学基金项目(No. BK20171228,No. BK20170394);中央高校基本科研业务费专项资金资助。

Factors affecting improvement in engineering properties of geomaterials by microbial-induced calcite precipitation

YIN Li-yang1, TANG Chao-sheng1, 2, XIE Yue-han1, LÜ Chao1, JIANG Ning-jun2, 3, SHI Bin1   

  1. 1. School of Earth Sciences and Engineering, Nanjing University, Nanjing, Jiangsu 210023, China; 2. High-Tech Institute at Suzhou Nanjing University, Suzhou, Jiangsu 215123, China; 3. Department of Civil and Environmental Engineering, University of Hawaii, Honolulu, Hawaii 96822, USA
  • Received:2018-04-02 Online:2019-07-11 Published:2019-07-06
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (41572246, 41772280), the National Natural Science Foundation--Outstanding Youth Foundation (41322019), the State Key Program of National Natural Science the National Natural Science Foundation of China (41230636), Jiangsu Natural Science Foundation (BK20171228, BK20170394) and the Fundamental Research Funds for the Central Universities.

摘要: 基于微生物诱导碳酸钙沉淀作用(MICP)的土体改性技术近年来在岩土工程领域引起了人们的广泛关注。该技术在改善岩土材料的强度、刚度、抗液化、抗侵蚀及抗渗透性等性能的同时,还能维持土体良好的透气性和透水性,改善植物的生长环境。由于微生物矿化作用涉及一系列生物化学和离子化学反应,固化过程中的反应步骤较多,因此,MICP固化效果受许多因素的制约与影响。基于大量文献资料,系统总结了细菌种类、菌液浓度、温度、pH值、胶结液配比及土的性质等关键因素对微生物改善岩土材料性能的影响,讨论了这些影响因素的优化方式和未来的研究方向,主要得到了以下几点结论:菌种类型、菌液浓度、温度、pH、胶结液性质会从微观上影响碳酸钙的晶体类型、形貌和尺寸,进而在宏观层面影响岩土体的胶结效果;菌液浓度尽可能高、温度在20~40℃间、pH值在7.0~9.5左右、胶结液浓度在1 mol/L以内的因素条件对微生物加固岩土体具有较好的效果。上述范围内的低温、较高的pH值、低浓度胶结液有助于提高土体的抗渗性,而高温、较低的pH值以及中高浓度胶结液有助于提高土体的强度;MICP加固土体的有效粒径范围为10~1 000 ?m,相对密度越大、级配越好则加固效果越好。分步灌浆法、多浓度相灌注法及电渗灌浆法有助于提高土体固化均匀性,0.042 (mol/L)/h以下的注浆速度有利于提高胶结液利用率,砂土试样的灌浆压力一般在10~30 kPa之间,粉黏土试样的灌浆压力不宜超过110 kPa,过高的灌浆压力会破坏土体结构,降低固化效果。

关键词: 微生物矿化作用, 影响因素, 菌种, 浓度, 温度, pH值, 胶结液, 土的性质, 灌浆

Abstract: Based on microbial induced carbonate precipitation (MICP), soil modification technology has attracted widespread concern in geotechnical engineering. This technology can not only improve the soil strength, stiffness, the properties of anti-liquefaction, anti-erosion and anti-permeability but also maintain good soil permeability and water permeability and improve the growth environment of the plants simultaneously. As the microbial mineralisation involves a series of complex biochemical and ion chemical reactions in the curing process, soil modification through MICP curing can be affected by many factors. In this paper, the effects of influence factors on the performance of microbial improved geomaterials were summarised, such as bacterial species, bacterial concentration, temperature, pH, the ratio of cement solution and soil properties, and their optimisation methods and future research direction were discussed as well. The conclusions are as follows. The bacteria type, bacteria concentration, temperature, pH, and the nature of the cement can affect the crystal type, crystal appearance, and size of calcium carbonates microscopically, and further affect the cementing effect of geomaterials macroscopically. The optimized conditions for strengthening the geomaterials are under the high bacteria concentration, the temperature from 20℃ to 40℃, the pH from 7 to 9.5, and the concentration of the cementation solution within 1 mol/L. In the optimised range of those factors, the soil permeability is improved by relatively low temperature, high pH value, and low concentration of cementation solution, while the soil strength is enhanced by the relatively high temperature, low pH value and high concentration of cementation solution. The effective grain size ranges from 10 to 1 000 μm, and the relatively large size and good gradation can promote the consolidation effect. The methods of multi-phase grouting, multi-concentration grouting and electroosmosis grouting improve the uniformity of soil solidification. The grouting speed below 0.042 mol/L/h is beneficial to improve the utilization ratio of the cement solution. The grouting pressure of the sand specimen is generally between 10 kPa~30 kPa bar, the grouting pressure of the silt and clay specimen should not exceed 110 kPa, and the high grouting pressure destroys the structure of soil and reduces the curing effect.

Key words: microbial-induced calcite precipitation, factors, bacterium, concentration, temperature, pH, cementation solution, soil properties, grouting method

中图分类号: 

  • TU 441
[1] 郤保平, 吴阳春, 王帅, 熊贵明, 赵阳升, . 热冲击作用下花岗岩力学特性及其随冷却温度 演变规律试验研究[J]. 岩土力学, 2020, 41(S1): 83-94.
[2] 张科, 李娜, 陈宇龙, 刘文连, . 裂隙砂岩变形破裂过程中应变场及红外辐射 温度场演化特征研究[J]. 岩土力学, 2020, 41(S1): 95-105.
[3] 徐衍, 周晓敏, 和晓楠, 吴涛, 张建岭, 李森. 矿山竖井井壁与围岩热−固耦合作用分析[J]. 岩土力学, 2020, 41(S1): 217-226.
[4] 周祥运, 孙德安, 罗汀. 核废料处置库近场温度半解析研究[J]. 岩土力学, 2020, 41(S1): 246-254.
[5] 谈云志, 胡焱, 曹玲, 邓永锋, 明华军, 沈克军, . 偏高岭土协同石灰钝化红黏土水敏性的机制[J]. 岩土力学, 2020, 41(7): 2207-2214.
[6] 骆赵刚, 汪时机, 杨振北, . 膨胀土湿干胀缩裂隙演化及其定量分析[J]. 岩土力学, 2020, 41(7): 2313-2323.
[7] 谈云志, 柯睿, 陈君廉, 吴军, 邓永锋. 碱溶液预降解淤泥有机质的效果与机制讨论[J]. 岩土力学, 2020, 41(5): 1567-1572.
[8] 胡田飞, 王天亮, 常键, 刘建勇, 卢玉婷, . 基于有限体积法的冻土水热耦合程序开发及验证[J]. 岩土力学, 2020, 41(5): 1781-1789.
[9] 孟祥传, 周家作, 韦昌富, 张坤, 沈正艳, 杨周洁, . 盐分对土的冻结温度及未冻水含量的影响研究[J]. 岩土力学, 2020, 41(3): 952-960.
[10] 杨军, 魏庆龙, 王亚军, 高玉兵, 侯世林, 乔博文, . 切顶卸压无煤柱自成巷顶板变形 机制及控制对策研究[J]. 岩土力学, 2020, 41(3): 989-998.
[11] 陈卫忠, 李翻翻, 雷江, 于洪丹, 马永尚, . 热−水−力耦合条件下黏土岩蠕变特性研究[J]. 岩土力学, 2020, 41(2): 379-388.
[12] 徐云山, 孙德安, 曾召田, 吕海波, . 膨润土热传导性能的温度效应[J]. 岩土力学, 2020, 41(1): 39-45.
[13] 肖瑶, 邓华锋, 李建林, 支永艳, 熊雨. 长期浸泡作用下灌浆加固裂隙岩体劣化效应[J]. 岩土力学, 2019, 40(S1): 143-151.
[14] 宋勇军, 杨慧敏, 张磊涛, 任建喜. 冻结红砂岩单轴损伤破坏CT实时试验研究[J]. 岩土力学, 2019, 40(S1): 152-160.
[15] 支永艳, 邓华锋, 肖瑶, 段玲玲, 蔡佳, 李建林. 微生物灌浆加固裂隙岩体的渗流特性分析[J]. 岩土力学, 2019, 40(S1): 237-244.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!