岩土力学 ›› 2020, Vol. 41 ›› Issue (S1): 83-94.doi: 10.16285/j.rsm.2019.1672

• 基础理论与实验研究 • 上一篇    下一篇

热冲击作用下花岗岩力学特性及其随冷却温度 演变规律试验研究

郤保平1, 2,吴阳春1,王帅1,熊贵明1,赵阳升1, 2   

  1. 1. 太原理工大学 矿业工程学院,山西 太原 030024;2. 太原理工大学 原位改性采矿教育部重点实验室,山西 太原 030024
  • 收稿日期:2019-09-25 修回日期:2019-12-14 出版日期:2020-06-19 发布日期:2020-06-04
  • 作者简介:郤保平,男,1976年生,博士,副教授,主要从事岩石力学与干热岩地热开发利用方面的科研工作。
  • 基金资助:
    国家自然科学基金面上项目(No.51874207,No.11772213);山西省自然科学基金项目(No.201701D121131);山西省研究生教育创新项目(No.2019SY127)。

Evolution of mechanical properties of granite under thermal shock in water with different cooling temperatures

XI Bao-ping1, 2, WU Yang-chun1, WANG Shuai1, XIONG Gui-ming1, ZHAO Yang-sheng1, 2   

  1. 1. College of Mining Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China; 2. Key Laboratory of In-situ Property Improving Mining of Ministry of Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
  • Received:2019-09-25 Revised:2019-12-14 Online:2020-06-19 Published:2020-06-04
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(51874207, 11772213), Shanxi Provincial Natural Science Foundation of China(201701D121131), and Shanxi Provincial Graduate Education Innovation Foundation of China(2019SY127).

摘要: 相同高温状态花岗岩在不同冷却温度介质中热冲击下的力学特性不同。热冲击作用下花岗岩的力学强度主要取决于内部热冲击破裂裂隙的密度和数量,其决定因素为热冲击速度和热冲击因子,与热冲击温差没有绝对的相关性。采用自主研制的岩石热冲击破裂试验台对青海共和盆地花岗岩进行热冲击破裂处理,测试其抗压强度、抗拉强度、黏聚力、内摩擦角等宏观力学参数,研究热冲击作用下花岗岩的宏观力学性质及其随冷却温度的演变规律。研究结果表明,(1)相同加热温度的花岗岩,经不同温度冷却介质热冲击破裂后单轴抗压强度、抗拉强度、黏聚力随着冷却介质温度的升高呈现降低趋势,内摩擦角随着冷却介质温度的升高而升高;(2)不同温度恒温水中热冲击下花岗岩的单轴抗压强度和抗拉强度呈有规律的劣化趋势,600 ℃花岗岩经100 ℃水热冲击处理后其抗压强度和抗拉强度仅为250 ℃是经20 ℃水热冲击作用后的30%;(3)黏聚力随着热冲击破裂程度的加剧呈减小趋势,内摩擦角呈明显增大趋势;(4)热冲击非定常传热对花岗岩力学性质具有劣化作用,干热岩地热人工热储的建造和井筒稳定性控制都需要考虑热冲击作用下花岗岩的强度随冷却介质温度的演变规律。

关键词: 花岗岩, 热冲击作用, 力学特性, 冷却介质温度, 演变规律

Abstract: The temperature of cooling medium has a significant influence on the mechanical properties of granite under the thermal shock, which is mainly determined by the number and density of internal cracks that are determined by the thermal shock velocity and thermal shock factor, but have no direct correlation with the temperature difference of thermal shock. In this paper, the self-developed rock thermal shock cracking test apparatus is used to study the evolution of macroscopic mechanical properties (e.g., the uniaxial compressive strength, tensile strength, cohesion and internal friction angle) granites, taken from Gonghe basin, Qinghai province, under thermal shock tests in water with different cooling temperature. The results show that, with the same heating temperature, the uniaxial compressive strength, tensile strength and cohesion of granite decrease with the increase of the cooling temperature, and the internal friction angle increase with the increase of the cooling temperature in water. The compressive strength and tensile strength of granite under thermal shock show a regular deterioration trend with the degree of thermal shock cracking. The compressive strength and tensile strength of granite heated up to 600 ℃ and rapidly cooled in 100 ℃ water, is only 30% of the granite heated up to 250 ℃ and rapidly cooled in 20 ℃ water. The cohesion of granite under thermal shock decreases with the increase of thermal shock cracking, while the internal friction angle increases obviously. The unsteady heat transfer caused by thermal shock has a degrading effect on the mechanical properties of granite. Therefore, the design and construction of drilling engineering and artificial reservoir in hot dry rocks, all requires to consider the influence of thermal shock on the strength.

Key words: granite, thermal shock, mechanical properties, cooling medium temperature, evolution rules

中图分类号: 

  • TU452
[1] 张艳博, 吴文瑞, 姚旭龙, 梁鹏, 田宝柱, 黄艳利, 梁精龙, . 单轴压缩下花岗岩声发射、红外特征及 损伤演化试验研究[J]. 岩土力学, 2020, 41(S1): 139-146.
[2] 蒋长宝, 魏 财, 段敏克, 陈昱霏, 余塘, 李政科, . 饱水和天然状态下页岩滞后效应及阻尼特性研究[J]. 岩土力学, 2020, 41(6): 1799-1808.
[3] 刘新宇, 张先伟, 岳好真, 孔令伟, 徐超, . 花岗岩残积土动态冲击性能的SHPB试验研究[J]. 岩土力学, 2020, 41(6): 2001-2008.
[4] 孟庆彬, 钱唯, 韩立军, 蔚立元, 王丛凯, 周星, . 极弱胶结岩体再生结构的形成机制 与力学特性试验研究[J]. 岩土力学, 2020, 41(3): 799-812.
[5] 张峰瑞, 姜谙男, 杨秀荣, 申发义. 冻融循环下花岗岩剪切蠕变试验与模型研究[J]. 岩土力学, 2020, 41(2): 509-519.
[6] 金爱兵, 刘佳伟, 赵怡晴, 王本鑫, 孙浩, 魏余栋, . 卸荷条件下花岗岩力学特性分析[J]. 岩土力学, 2019, 40(S1): 459-467.
[7] 彭守建, 岳雨晴, 刘义鑫, 许江, . 不同成因结构面各向异性特征及其剪切力学特性[J]. 岩土力学, 2019, 40(9): 3291-3299.
[8] 雷江, 陈卫忠, 李翻翻, 于洪丹, 马永尚, 谢华东, 王富刚, . 引红济石引水隧洞围岩力学特性研究[J]. 岩土力学, 2019, 40(9): 3435-3446.
[9] 王冲, 胡大伟, 任金明, 周辉, 卢景景, 刘传新, . 侵蚀性环境对地下结构渗透和力学特性影响研究[J]. 岩土力学, 2019, 40(9): 3457-3464.
[10] 蔡雨, 徐林荣, 周德泉, 邓超, 冯晨曦, . 自平衡与传统静载试桩法模型试验研究[J]. 岩土力学, 2019, 40(8): 3011-3018.
[11] 武晋文, 冯子军, 梁栋, 鲍先凯, . 单轴应力下带钻孔花岗岩注入高温蒸汽 破坏特征研究[J]. 岩土力学, 2019, 40(7): 2637-2644.
[12] 刘 健, 陈 亮, 王春萍, 马利科, 王 驹. 一种非稳态气体渗流条件下岩石渗透特性 参数计算方法及应用[J]. 岩土力学, 2019, 40(5): 1721-1730.
[13] 丛 怡, 丛 宇, 张黎明, 贾乐鑫, 王在泉, . 大理岩加、卸荷破坏过程的三维颗粒流模拟[J]. 岩土力学, 2019, 40(3): 1179-1186.
[14] 王家全, 张亮亮, 赖 毅, 陆梦梁, 叶 斌, . 加筋土挡墙静动力学特性大模型试验研究[J]. 岩土力学, 2019, 40(2): 497-505.
[15] 李 军, 张 杨, 胡大伟, 周 辉, 卢景景, 吕 涛, 史林肯, . 花岗岩三轴循环加卸载条件下的气体渗透率[J]. 岩土力学, 2019, 40(2): 693-700.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!