岩土力学 ›› 2022, Vol. 43 ›› Issue (S1): 321-330.doi: 10.16285/j.rsm.2020.0691
高敏1,何绍衡1,夏唐代1,丁智2,王新刚1,张琼方3
GAO Min1, HE Shao-heng1, XIA Tang-dai1, DING Zhi2, WANG Xin-gang1, ZHANG Qiong-fang3
摘要: 对中国南海钙质砂开展了一系列复杂应力路径下的排水三轴剪切试验,系统研究了应力路径对钙质砂颗粒破碎和抗剪强度的影响机制。研究表明:钙质砂的各项力学特性均随着剪切加载方向的偏转呈现规律性变化,当应力路径处于加荷区,随着应力路径顺时针偏转,钙质砂的软化程度和抗剪强度逐渐增大、剪胀性降低、颗粒破碎程度增大、峰值内摩擦角减小。而应力路径处于卸荷区时,钙质砂破坏具有突然性,颗粒破碎程度也较大。存在“0初始应力影响”应力路径分界线,使得初始平均有效应力对其两侧应力路径区域内体变的影响完全相反。基于分形理论建立了不同初始平均有效应力、固结方式和剪切路径下预测相对颗粒破碎指标Br值的经验公式,并揭示了应力路径和颗粒破碎耦合作用对钙质砂剪切行为的复杂影响机制。根据试验结果,应用广义加性模型(generalized additive model,简称GAM)推导了考虑颗粒破碎和应力路径影响的强度包线,可作为预测钙质砂在不同应力路径下峰值强度的依据。
中图分类号:
[1] | 曾召田, 梁珍, 孙凌云, 付慧丽, 范理云, 潘斌, 于海浩, . 水泥胶结钙质砂导热系数的影响因素试验研究[J]. 岩土力学, 2022, 43(S1): 88-96. |
[2] | 申嘉伟, 周博, 付茹, 库泉, 汪华斌, . 钙质砂单颗粒破碎强度和模式的试验研究[J]. 岩土力学, 2022, 43(S1): 312-320. |
[3] | 覃东来, 孟庆山, 阎钶, 覃庆龙, 黄孝芳, 饶佩森, . 钙质砂砾剪切强度及变形的粒径效应试验研究[J]. 岩土力学, 2022, 43(S1): 331-338. |
[4] | 张小燕, 张益, 张晋勋, 魏凯园, 王宁, . 含橡胶纤维钙质砂的渗透和固结特性试验研究[J]. 岩土力学, 2022, 43(8): 2115-2122. |
[5] | 柴源, 牛勇, 吕海波, . 水泥胶结钙质砂地层中单桩竖向承载特性试验研究[J]. 岩土力学, 2022, 43(8): 2203-2212. |
[6] | 王嘉璐, 张升, 童晨曦, 戴邵衡, 黎章. 基于染色标定的钙质砂颗粒破碎级配 转移矩阵试验研究[J]. 岩土力学, 2022, 43(8): 2222-2232. |
[7] | 陈宾, 邓坚, 胡杰铭, 张建林, 张涛, . 钙质砂一维蠕变分形破碎特性宏微观试验研究[J]. 岩土力学, 2022, 43(7): 1781-1790. |
[8] | 王海波, 吕伟华, 武荘, 朱文波, . 不同温度应力路径下饱和黏土剪切特性[J]. 岩土力学, 2022, 43(3): 679-687. |
[9] | 胡聪, 龙志林, 旷杜敏, 龚钊卯, 俞飘旖, 徐国斌. 基于多视角二维图像的钙质砂颗粒三维重构方法[J]. 岩土力学, 2022, 43(3): 761-768. |
[10] | 肖瑶, 邓华锋, 李建林, 程雷, 朱文羲. 海水环境下巴氏芽孢杆菌驯化 及钙质砂固化效果研究[J]. 岩土力学, 2022, 43(2): 395-404. |
[11] | 万志辉, 戴国亮, 龚维明, 高鲁超, . 海水环境下钙质砂水泥土加固体的 微观侵蚀机制试验研究[J]. 岩土力学, 2021, 42(7): 1871-1882. |
[12] | 饶佩森, 李丹, 孟庆山, 王新志, 付金鑫, 雷学文, . 循环荷载作用下钙质砂地基土压力分布特征研究[J]. 岩土力学, 2021, 42(6): 1579-1586. |
[13] | 鞠远江, 胡明鉴, 秦坤坤, 宋博, 孙子晨, . 珊瑚礁岛钙质砂细颗粒渗透运移规律研究[J]. 岩土力学, 2021, 42(5): 1245-1253. |
[14] | 董博文, 刘士雨, 俞缙, 肖杨, 蔡燕燕, 涂兵雄. 基于微生物诱导碳酸钙沉淀的天然海水 加固钙质砂效果评价[J]. 岩土力学, 2021, 42(4): 1104-1114. |
[15] | 胡利文, 刘志军, . 真空预压加固土体变形机制分析[J]. 岩土力学, 2021, 42(3): 790-799. |
|