岩土力学 ›› 2022, Vol. 43 ›› Issue (2): 395-404.doi: 10.16285/j.rsm.2021.1455

• 基础理论与实验研究 • 上一篇    下一篇

海水环境下巴氏芽孢杆菌驯化 及钙质砂固化效果研究

肖瑶,邓华锋,李建林,程雷,朱文羲   

  1. 三峡大学 三峡库区地质灾害教育部重点实验室,湖北 宜昌 443002
  • 收稿日期:2021-08-30 修回日期:2021-11-23 出版日期:2022-02-11 发布日期:2022-02-22
  • 通讯作者: 邓华锋,男,1979年生,博士,教授,博士生导师,主要从事地质灾害致灾机制与防治等方面的研究。E-mail: dhf8010@ctgu.edu.cn E-mail: xy0515@ctgu.edu.cn
  • 作者简介:肖瑶,女,1992年生,博士研究生,主要从事微生物岩土体材料的加固及应用等方面的研究。
  • 基金资助:
    国家自然科学基金(No. U2034203);湖北省自然科学基金创新群体项目(No. 2020CFA049);三峡大学学位论文培优基金项目(No. 2020BSPY001)。

Study on the domestication of Sporosarcina pasteurii and strengthening effect of calcareous sand in seawater environment

XIAO Yao, DENG Hua-feng, LI Jian-lin, CHENG Lei, ZHU Wen-xi   

  1. Key Laboratory of Geological Hazards on Three Gorges Reservoir Area of Ministry of Education, China Three Gorges University, Yichang, Hubei 443002, China
  • Received:2021-08-30 Revised:2021-11-23 Online:2022-02-11 Published:2022-02-22
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (U2034203), the Innovative Group Project of Natural Science Foundation of Hubei Province (2020CFA049) and the Research Fund for Excellent Dissertation of China Three Gorges University (2020BSPY001).

摘要: 为了提升微生物诱导碳酸盐沉淀(MICP)技术在海洋环境下对钙质砂的加固效果,在以往研究的基础上,设计进行了人工海水环境下巴氏芽孢杆菌多梯度人工驯化培养试验,并结合MICP固化钙质砂柱的力学试验和微细观结构分析,对巴氏芽孢杆菌的驯化效果进行了综合评价。结果表明:(1)海水环境下五梯度驯化后细菌的菌液浓度可达到淡水环境的97%以上,其与胶结液作用后碳酸盐的生成量较淡水环境下有一定幅度提高;(2)驯化后的巴氏芽孢杆菌具有很好的温度适应能力,在10~30 ℃温度下均有较好的MICP性能;(3)海水环境下加固的钙质砂柱无论是碳酸盐生成量还是无侧限抗压强度均较未驯化前高,尤其是五梯度驯化后的细菌,驯化后的细菌菌体变小,在海水环境生成的碳酸盐(碳酸钙和碳酸镁)晶体更小,更加致密,能更好地填充钙质砂颗粒的孔隙并胶结相邻的钙质砂颗粒,具有更优异的MICP性能。相关研究思路和方法可为MICP技术在海洋环境钙质砂地基加固方面的研究与应用提供参考。

关键词: 海水环境, 梯度驯化, 钙质砂, 巴氏芽孢杆菌, 微生物诱导碳酸盐沉淀(MICP)

Abstract: In order to improve the strengthening effect of microbially induced carbonate precipitation (MICP) technology on calcareous sand in the marine environment, on the basis of previous studies, the multi-gradient artificial domestication culture test of Sporosarcina pasteurii in artificial seawater environment was designed and carried out. Combined with the mechanical test and micro-mesostructural analysis of MICP strengthened calcareous sand column, the domestication effect of Sporosarcina pasteurii was comprehensively evaluated. The results showed that: i) The bacterial liquid concentration after five-gradient domestication in seawater environment could reach more than 97% of that in freshwater environment, and the production of carbonate after the interaction with cementing fluid was increased to a certain extent compared with that in freshwater environment. ii) The domesticated Sporosarcina pasteurii had good temperature adaptability, and it had good MICP performance at 10 ℃ to 30 ℃. iii) Both carbonate production and unconfined compressive strength of calcareous sand columns strengthened in seawater environment were higher than those before domestication, especially the bacteria after five-gradient domestication, and the bacteria after domestication became smaller. The carbonate crystals (calcium carbonate and magnesium carbonate) generated in the seawater environment were smaller and denser, which could better fill the pores of calcareous sand particles and cement the adjacent calcareous sand particles, and had better MICP performance. The relevant research ideas and methods can provide reference for the research and application of MICP technology in the reinforcement of calcareous sand foundation in seawater environment.

Key words: seawater environment, gradient domestication, calcareous sand, Sporosarcina pasteurii, microbially induced carbonate precipitation (MICP)

中图分类号: 

  • TU 441
[1] 胡聪, 龙志林, 旷杜敏, 龚钊卯, 俞飘旖, 徐国斌. 基于多视角二维图像的钙质砂颗粒三维重构方法[J]. 岩土力学, 2022, 43(3): 761-768.
[2] 万志辉, 戴国亮, 龚维明, 高鲁超, . 海水环境下钙质砂水泥土加固体的 微观侵蚀机制试验研究[J]. 岩土力学, 2021, 42(7): 1871-1882.
[3] 饶佩森, 李丹, 孟庆山, 王新志, 付金鑫, 雷学文, . 循环荷载作用下钙质砂地基土压力分布特征研究[J]. 岩土力学, 2021, 42(6): 1579-1586.
[4] 鞠远江, 胡明鉴, 秦坤坤, 宋博, 孙子晨, . 珊瑚礁岛钙质砂细颗粒渗透运移规律研究[J]. 岩土力学, 2021, 42(5): 1245-1253.
[5] 董博文, 刘士雨, 俞缙, 肖杨, 蔡燕燕, 涂兵雄. 基于微生物诱导碳酸钙沉淀的天然海水 加固钙质砂效果评价[J]. 岩土力学, 2021, 42(4): 1104-1114.
[6] 万志辉, 戴国亮, 龚维明, 高鲁超, 徐艺飞, . 钙质砂后压浆桩水平承载性状模型试验研究[J]. 岩土力学, 2021, 42(2): 411-418.
[7] 闫超萍, 龙志林, 周益春, 旷杜敏, 陈佳敏, . 钙质砂剪切特性的围压效应和粒径效应研究[J]. 岩土力学, 2020, 41(2): 581-591.
[8] 芮圣洁, 国振, 王立忠, 周文杰, 李雨杰, . 钙质砂与钢界面循环剪切刚度与阻尼比的试验研究[J]. 岩土力学, 2020, 41(1): 78-86.
[9] 张晨阳, 谌民, 胡明鉴, 王新志, 唐健健, . 细颗粒组分含量对钙质砂抗剪强度的影响[J]. 岩土力学, 2019, 40(S1): 195-202.
[10] 柴 维, 龙志林, 旷杜敏, 陈佳敏, 闫超萍. 直剪剪切速率对钙质砂强度及变形特征的影响[J]. 岩土力学, 2019, 40(S1): 359-366.
[11] 胡明鉴, 崔 翔, 王新志, 刘海峰, 杜 韦, . 细颗粒对钙质砂渗透性的影响试验研究[J]. 岩土力学, 2019, 40(8): 2925-2930.
[12] 彭宇, 丁选明, 肖杨, 楚剑, 邓玮婷, . 基于染色标定与图像颗粒分割的 钙质砂颗粒破碎特性研究[J]. 岩土力学, 2019, 40(7): 2663-2672.
[13] 谌民, 张涛, 单华刚, 王新志, 孟庆山, 余克服, . 钙质砂压缩波速与物理性质参数关系研究[J]. 岩土力学, 2019, 40(6): 2275-2283.
[14] 曹 梦, 叶剑红, . 中国南海钙质砂蠕变-应力-时间四参数数学模型[J]. 岩土力学, 2019, 40(5): 1771-1777.
[15] 王 胤, 周令新, 杨 庆. 基于不规则钙质砂颗粒发展的拖曳力系数模型 及其在细观流固耦合数值模拟中应用[J]. 岩土力学, 2019, 40(5): 2009-2015.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .