岩土力学 ›› 2019, Vol. 40 ›› Issue (8): 2925-2930.doi: 10.16285/j.rsm.2018.0849

• 基础理论与实验研究 • 上一篇    下一篇

细颗粒对钙质砂渗透性的影响试验研究

胡明鉴1,崔 翔1, 2,王新志1,刘海峰1,杜 韦3   

  1. 1. 中国科学院武汉岩土力学研究所 岩土力学与工程国家重点实验室,湖北 武汉 430071; 2. 中国科学院大学,北京 100049;3. 湖北交投宜昌高速公路运营管理有限公司,湖北 宜昌 443000
  • 收稿日期:2018-05-15 出版日期:2019-08-12 发布日期:2019-08-24
  • 作者简介:胡明鉴,男,1974年生,博士,研究员,主要从事滑坡泥石流研究和地下水动力学方面的工作。
  • 基金资助:
    国家自然科学基金面上项目(No. 41572304);中科院科技先导专项A类子课题(No. XDA13010301)

Experimental study of the effect of fine particles on permeability of the calcareous sand

HU Ming-jian1, CUI Xiang1, 2, WANG Xin-zhi1, LIU Hai-feng1, DU Wei3   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. Yichang Expressway Operation Management Co., Ltd. of HBCI, Yichang, Hubei 443000, China
  • Received:2018-05-15 Online:2019-08-12 Published:2019-08-24
  • Supported by:
    This work was supported by the General Program of National Natural Science Foundation of China (41572304) and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA13010301).

摘要: 钙质砂地基的渗透性是影响人工灰沙岛地下淡水形成的重要因素,而细颗粒的含量及其赋存状态对渗透性有重要的影响,为此开展了不同细颗粒含量的钙质砂渗透性试验研究。选用南海某岛的钙质砂,基于不同细粒配比的钙质砂样常水头渗透试验,分析细颗粒对钙质砂地层渗透性的影响。试验结果显示,促使钙质砂渗透性发生明显变化的粒级为≤0.075 mm范围。当最小粒径≤0.075 mm时,钙质砂的渗透系数量级为10?2 cm/s,呈中透水性。当最小粒径介于0.075~0.500 mm时,渗透系数量级为10?1 cm/s,呈高透水性。钙质砂最终稳定渗透系数与细粒含量之间表现出不同的规律:(1)当细颗粒含量小于9%时,渗透系数随细粒含量的增加而缓慢减小;(2)当细颗粒含量在9%~24%时,渗透性随细粒含量的增加而迅速减小;(3)当细颗粒含量大于24%时,渗透性随细粒含量的增加变化不大。影响渗透系数的细粒含量存在着由试样骨架形成的孔隙决定的,反映孔隙最佳充填时的细粒含量界限值,充填不佳或过量细粒均可能在渗透作用下发生细粒运移流失。

关键词: 钙质砂, 渗透系数, 细颗粒, 含量, 流失

Abstract: The permeability of calcareous sand has significant influence on the formation of underground freshwater in coral island. Since the contents and occurrence states of fine particles play important roles on the permeability of calcareous sand, it is necessary to analyze their effects and relationships. Permeability tests with constant hydraulic head were carried out on different fine particle contents and particle size combinations of the calcareous sand collected from an island in South China Sea. Results show that the upper bound of particle size affecting the permeability of calcareous sand is 0.075 mm. When the minimum particle size is less than 0.075 mm, the permeability coefficient of calcareous sand is 10?2 cm/s and can be defined as medium permeability according to the permeability coefficient. When the minimum particles size is between 0.075 mm and 0.500 mm, the permeability coefficient is 10?1 cm/s, which shows high permeability. The stable permeability coefficients of the calcareous sand change with the increase of fine particle contents, and the relationship shows as the following: 1) When the fine particles contents are less than 9%, the permeability coefficients decrease slowly with the increase of the fine particles contents. 2) When the fine particle contents are within the range of 9%-24%, the permeability coefficients decrease rapidly with the increase of the fine particles contents. 3) The permeability coefficients tend to be in steady state when the fine particles contents are more than 24%. The fine particle content that affects the permeability coefficient is determined by the pores formed by the skeleton, which reflects the limit value of the fine particle content when the pores are optimally filled. Poor packing or excessive fine particles can result in the migration and loss of fine particles under infiltrate process.

Key words: calcareous sand, permeability coefficient, fine particles, content, loss

中图分类号: 

  • TU 451
[1] 桂跃, 吴承坤, 赵振兴, 刘声钧, 刘锐, 张秋敏. 微生物分解有机质作用对泥炭土工程性质的影响[J]. 岩土力学, 2020, 41(S1): 147-155.
[2] 谈云志, 柯睿, 陈君廉, 吴军, 邓永锋. 碱溶液预降解淤泥有机质的效果与机制讨论[J]. 岩土力学, 2020, 41(5): 1567-1572.
[3] 薛阳, 吴益平, 苗发盛, 李麟玮, 廖康, 张龙飞. 库水升降条件下考虑饱和渗透系数空间变异性的白水河滑坡渗流变形分析[J]. 岩土力学, 2020, 41(5): 1709-1720.
[4] 胡田飞, 王天亮, 常键, 刘建勇, 卢玉婷, . 基于有限体积法的冻土水热耦合程序开发及验证[J]. 岩土力学, 2020, 41(5): 1781-1789.
[5] 谈云志, 柯睿, 陈君廉, 吴军, 邓永锋. 偏高岭土增强石灰-水泥固化淤泥的耐久性研究[J]. 岩土力学, 2020, 41(4): 1146-1152.
[6] 范日东, 杜延军, 刘松玉, 杨玉玲, . 无机盐溶液作用下砂−膨润土竖向隔离屏障 材料化学相容性试验研究[J]. 岩土力学, 2020, 41(3): 736-746.
[7] 孟祥传, 周家作, 韦昌富, 张坤, 沈正艳, 杨周洁, . 盐分对土的冻结温度及未冻水含量的影响研究[J]. 岩土力学, 2020, 41(3): 952-960.
[8] 盛建龙, 韩云飞, 叶祖洋, 程爱平, 黄诗冰, . 粗糙裂隙水、气两相流相对渗透系数模型与数值分析[J]. 岩土力学, 2020, 41(3): 1048-1055.
[9] 李红坡, 陈征, 冯健雪, 蒙宇涵, 梅国雄, . 双层地基水平排水砂垫层位置优化研究[J]. 岩土力学, 2020, 41(2): 437-444.
[10] 闫超萍, 龙志林, 周益春, 旷杜敏, 陈佳敏, . 钙质砂剪切特性的围压效应和粒径效应研究[J]. 岩土力学, 2020, 41(2): 581-591.
[11] 彭家奕, 张家发, 沈振中, 叶加兵, . 颗粒形状对粗粒土孔隙特征和渗透性的影响[J]. 岩土力学, 2020, 41(2): 592-600.
[12] 王刚, 韦林邑, 魏星, 张建民, . 压实黏土三轴压缩变形过程中的渗透性变化规律[J]. 岩土力学, 2020, 41(1): 32-38.
[13] 芮圣洁, 国振, 王立忠, 周文杰, 李雨杰, . 钙质砂与钢界面循环剪切刚度与阻尼比的试验研究[J]. 岩土力学, 2020, 41(1): 78-86.
[14] 李小刚, 朱长歧, 崔翔, 张珀瑜, 王睿, . 含碳酸盐混合砂的三轴剪切试验研究[J]. 岩土力学, 2020, 41(1): 123-131.
[15] 张晨阳, 谌民, 胡明鉴, 王新志, 唐健健, . 细颗粒组分含量对钙质砂抗剪强度的影响[J]. 岩土力学, 2019, 40(S1): 195-202.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!