岩土力学 ›› 2022, Vol. 43 ›› Issue (8): 2203-2212.doi: 10.16285/j.rsm.2021.1190
柴源1,牛勇2,吕海波3
CHAI Yuan1, NIU Yong2, LÜ Hai-bo3
摘要: 钙质砂属于岩土工程中一种特殊的岩土材料,除具有颗粒形状不规则、易破碎等特征,还具有胶结性。针对钙质砂具有胶结性的地质现状,通过室内模型试验研究了胶结钙质砂地层中钢管桩的承载能力、沉降情况及其影响因素,同时与未胶结钙质砂中的桩基承载特性进行了对比。研究结果表明:与未胶结钙质砂中的钢管桩相比,胶结钙质砂的相对密实度对桩基承载力影响程度明显减弱,桩的承载形式依然表现为端承桩,随着钙质砂胶结程度的提升,桩端阻力承载占比越来越高;胶结程度较高的钙质砂地层中桩身侧摩阻力发挥存在异步过程,这是因为桩基沉降时桩身下部破坏砂层形成了更为紧密的新接触面,该接触面对桩身的径向膨胀更为敏感;胶结钙质砂中桩基 qs-Su 线没有出现明显的硬化阶段,与未胶结钙质砂地层中桩基的 qs-Su 多段折线变化规律不同,胶结钙质砂地层中桩基的 qs-Su 曲线更为接近双曲线线型。
中图分类号:
[1] | 刘斯宏, 沈超敏, 程德虎, 张呈斌, 毛航宇, . 土工袋加固膨胀土边坡降雨−日晒循环试验研究[J]. 岩土力学, 2022, 43(S2): 35-42. |
[2] | 汤炀, 刘干斌, 郑明飞, 史世雍, . 饱和粉土中相变能源桩热力响应模型试验研究[J]. 岩土力学, 2022, 43(S2): 282-290. |
[3] | 钟卫, 张 帅, 贺拿. 基于相对变形方法的桩后土拱模型试验研究[J]. 岩土力学, 2022, 43(S2): 315-326. |
[4] | 罗维平, 袁大军, 金大龙, 陆平, 陈健, 郭海鹏, . 富水砂层盾构开挖面支护压力与地层变形关系 离心模型试验研究[J]. 岩土力学, 2022, 43(S2): 345-354. |
[5] | 张驰, 赖俊荣, 阮芳伟, 徐永华, 王勇, 刘观仕, 徐国方, . 海洋钢管桩发生溜桩的地层条件及 桩侧动摩阻力计算方法[J]. 岩土力学, 2022, 43(S2): 355-360. |
[6] | 曾召田, 梁珍, 孙凌云, 付慧丽, 范理云, 潘斌, 于海浩, . 水泥胶结钙质砂导热系数的影响因素试验研究[J]. 岩土力学, 2022, 43(S1): 88-96. |
[7] | 谭飞, 林大伟, 焦玉勇, 于锦. 钢护筒涂层减阻桩隔离层试验研究[J]. 岩土力学, 2022, 43(S1): 229-236. |
[8] | 刘博, 徐飞, 赵维刚, 高阳, . 隧道工程结构模型试验系统研究综述与展望[J]. 岩土力学, 2022, 43(S1): 452-468. |
[9] | 王心博, 王路君, 朱斌, 王鹏, 袁思敏, 陈云敏, . 水合物储层伺服降压开采模型试验研究[J]. 岩土力学, 2022, 43(9): 2360-2370. |
[10] | 邓波, 杨明辉, 王东星, 樊军伟, . 刚性挡墙后非饱和土破坏模式及主动土压力计算[J]. 岩土力学, 2022, 43(9): 2371-2382. |
[11] | 韦超, 朱鸿鹄, 高宇新, 王静, 张巍, 施斌, . 地面塌陷分布式光纤感测模型试验研究[J]. 岩土力学, 2022, 43(9): 2443-2456. |
[12] | 景立平, 吴凡, 李嘉瑞, 汪刚, 齐文浩, 周中一, . 土−桩基−隔震支座−核岛地震反应试验研究[J]. 岩土力学, 2022, 43(9): 2483-2492. |
[13] | 闫国强, 殷跃平, 黄波林, 胡雷, . 三峡库区顺层灰岩岸坡劣化−溃屈灾变机制研究[J]. 岩土力学, 2022, 43(9): 2568-2580. |
[14] | 兰景岩, 蔡金豆, 吴连斌, 史庆旗, . 含隧道场地地震动放大效应的深度变化规律研究[J]. 岩土力学, 2022, 43(8): 2083-2091. |
[15] | 樊浩博, 周定坤, 刘勇, 宋玉香, 朱正国, 朱永全, 高新强, 郭佳奇, . 富水管道型岩溶隧道衬砌结构力学响应特征研究[J]. 岩土力学, 2022, 43(7): 1884-1898. |
|