岩土力学 ›› 2022, Vol. 43 ›› Issue (9): 2568-2580.doi: 10.16285/j.rsm.2021.2009

• 岩土工程研究 • 上一篇    下一篇

三峡库区顺层灰岩岸坡劣化−溃屈灾变机制研究

闫国强1,殷跃平2,黄波林3,胡雷3   

  1. 1. 中国地质大学(武汉)工程学院,湖北 武汉 430074;2. 中国地质环境监测院,北京 100081; 3. 三峡大学 防灾减灾湖北省重点试验室,湖北 宜昌 443002
  • 收稿日期:2021-11-30 修回日期:2022-05-11 出版日期:2022-09-12 发布日期:2022-09-12
  • 通讯作者: 殷跃平,男,1960年生,博士,研究员,博士生导师,现任自然资源部地质灾害首席科学家,主要从事地质灾害和工程防治方面的研究工作。E-mail: yinypcgs@hotmail.com E-mail:1491095791@qq.com.cn
  • 作者简介:闫国强,男,1992年生,博士研究生,主要从事水库地质灾害防治与岸坡劣化机制的研究。
  • 基金资助:
    国家自然科学基金项目(No.42077234);国家重点研发计划项目(No.2018YFC1504803)

Deterioration-buckling failure mechanism of consequent bedding limestone bank slope in Three Gorges Reservoir area

YAN Guo-qiang1, YIN Yue-ping2, HUANG Bo-lin3, HU Lei3   

  1. 1. Faculty of Engineering, China University of Geosciences, Wuhan, Hubei 430074, China; 2. China Institute of Geological Environment Monitoring, Beijing 100081, China; 3. Hubei Key Laboratory of Disaster Prevention and Mitigation, China Three Gorges University, Yichang, Hubei 443002, China
  • Received:2021-11-30 Revised:2022-05-11 Online:2022-09-12 Published:2022-09-12
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(42077234) and the National Key R&D Program of China (2018YFC1504803).

摘要: 三峡库区巫峡段发现多处顺层岸坡滑移−弯曲变形迹象,库水循环涨落加剧了岸坡前缘劣化损伤与失稳破坏。以巫峡段青石 6号坡为例构建室内概化模型,开展顺层灰岩岸坡在消落带岩体劣化下的灾变机制研究。研究结果表明:蓄水前岸坡整体长期处于稳定状态。随着劣化进行,蓄水后岸坡变形加剧直至溃屈破坏,岩体劣化缩短了劣化−溃屈失稳进程。运动学分析显示,溃屈破坏时同一岩层达到速度峰值近似。岩层“弯折点”后部运动特征较为一致,前部较为离散。溃屈破坏点是岸坡能量释放的转折点和顶点;随劣化演变位移、应力逐渐递增,呈现提前破坏征兆,溃屈破坏前后应力产生“集中−释放”。整体来看,应力变化提前于位移,表明应力监测更有效。应力监测的核心在于关键区段的确定,对于劣化−溃屈型岸坡来讲,前缘“挠曲段”处应力陡增可作为岸坡临界失稳的重要表征;“劣化−溃屈”演化进程中后缘推挤始终存在,它是岸坡灾变的前提。但岸坡失稳的主导因素却是消落带岩体持续不断的劣化。青石 6 号坡当前处于向强烈弯曲隆起演化进程中,由于消落带岩体持续劣化,可能由稳定/基本稳定逐渐演变为欠稳定状态。

关键词: 物理模型试验, 岩体劣化, 顺层灰岩岸坡, 劣化?溃屈, 三峡库区巫峡段

Abstract: In the Wuxia section of the Three Gorges Reservoir area, it is found that there are many deformation signs of sliding-bending along the bedding bank slope, and the cyclic fluctuation of reservoir water worsens the deterioration and instability of the bank leading edge. Taking Qingshi #6 slope in the Wuxia section as an example, an indoor generalized model is constructed to study the catastrophe mechanism of bedding limestone bank slope under the deterioration of rock mass in hydro-fluctuation belt. The research shows that: the bank slope is in a stable state as a whole for a long time before impoundment. After impoundment, with the deterioration aggravation of rock mass, the bank slope deformation intensifies until buckling failure. The deterioration of rock mass shortens the instability process of ‘deterioration-buckling’. Kinematic analysis shows that the peak velocity of the same rock stratum is similar during buckling failure. The movement characteristics of the rear part of the ‘buckling point’ of rock mass are relatively consistent, but the front part is relatively discrete. The buckling failure is the turning point and apex of bank slope energy release. Both displacement and stress show signs of premature failure after gradually increasing with deterioration evolution. The stress produces ‘concentration-release’ around the buckling failure. On the whole, the stress variation is earlier than the displacement variation, indicating that the stress monitoring is more effective. The core of stress monitoring is to determine the ‘key section’. For the ‘deterioration-buckling’ bank slope, the sharp increase of stress at the ‘deflection section’ of the front edge can be an important characterization of the critical instability of the bank slope. The trailing edge pushing always exists in the evolution process of ‘deterioration buckling’, which is the premise of bank slope catastrophe failure. However, the dominant factor of bank slope instability is the continuous deterioration of the rock mass in the hydro-fluctuation belt. The Qingshi #6 slope is currently in the process of evolution toward ‘strong bending uplift’, it may gradually evolve from a stable/basically stable state to an understable state, due to the continuous deterioration of the rock mass in the hydro-fluctuation belt.

Key words: physical model test, rock mass deterioration, consequent bedding limestone bank slope, deterioration-buckling, Wuxia section of the Three Gorges Reservoir

中图分类号: 

  • P694,TU457
[1] 钟卫, 张 帅, 贺拿. 基于相对变形方法的桩后土拱模型试验研究[J]. 岩土力学, 2022, 43(S2): 315-326.
[2] 肖捷夫, 李云安, 胡勇, 张申, 蔡浚明, . 库水涨落和降雨条件下古滑坡变形特征 模型试验研究[J]. 岩土力学, 2021, 42(2): 471-480.
[3] 张全, 黄波林, 郑嘉豪, 赵海林, 冯万里, 陈小婷, . 柱状危岩体压溃式崩塌产生涌浪预测分析[J]. 岩土力学, 2021, 42(10): 2845-2854.
[4] 程永辉, 胡胜刚, 王汉武, 张成. 深埋砂层旁压特征参数的深度效应研究[J]. 岩土力学, 2020, 41(6): 1881-1886.
[5] 王东坡, 陈政, 何思明, 陈克坚, 刘发明, 李明清, . 泥石流冲击桥墩动力相互作用物理模型试验[J]. 岩土力学, 2019, 40(9): 3363-3372.
[6] 马显春, 罗 刚, 邓建辉, 上官力, . 陡倾滑面堆积层滑坡抗滑桩锚固深度研究[J]. 岩土力学, 2018, 39(S2): 157-168.
[7] 蔡 强,李乾坤,石胜伟,张 勇, . 钢管抗滑短桩受力特性物理模型试验研究[J]. , 2016, 37(S2): 679-684.
[8] 金 林,胡新丽,谭福林,何春灿,章 涵,张玉明. 基于红外热成像技术的抗滑桩土拱效应模型试验研究[J]. , 2016, 37(8): 2332-2340.
[9] 季宪军,梁 瑛 ,欧国强 ,杨 顺 ,王 钧 ,陆桂红,. 黏性碎屑流坡面运动过程数值模拟与检验[J]. , 2015, 36(8): 2402-2408.
[10] 黄锦林 ,张 婷,李嘉琳 , . 库岸滑坡涌浪经验估算方法对比分析[J]. , 2014, 35(S1): 133-140.
[11] 祝廷尉,胡新丽,徐 聪,雍 睿. 嵌岩桩抗滑特性的物理模型试验研究[J]. , 2014, 35(S1): 165-172.
[12] 罗 忆 ,李新平 ,徐鹏程 ,董 千 ,洪吉松 , . 考虑累积损伤效应的围岩变形特性研究[J]. , 2014, 35(11): 3041-2048.
[13] 武伯弢 ,朱合华 ,徐前卫 ,明 娟 . IV级软弱围岩相似材料的试验研究[J]. , 2013, 34(S1): 109-116.
[14] 陈 浩 ,任伟中 ,舒中根 ,李 丹 . 不同支护条件下锚杆支护作用的模型试验研究与数值分析[J]. , 2012, 33(S1): 277-282.
[15] 聂利超,李术才,刘 斌,李树忱,钟世航,宋杰,刘征宇. 隧道含水构造频域激发极化法超前探测研究[J]. , 2012, 33(4): 1151-1160.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .