岩土力学 ›› 2022, Vol. 43 ›› Issue (S2): 315-326.doi: 10.16285/j.rsm.2021.1028

• 基础理论与实验研究 • 上一篇    下一篇

基于相对变形方法的桩后土拱模型试验研究

钟卫1,张帅1, 2,贺拿2   

  1. 1. 中国科学院、水利部成都山地灾害与环境研究所 山地灾害与地表过程重点实验室,四川 成都 610041; 2. 河南理工大学 土木工程学院,河南 焦作 454003
  • 收稿日期:2021-07-08 修回日期:2022-02-21 出版日期:2022-10-10 发布日期:2022-10-03
  • 通讯作者: 贺拿,男,1984年生,博士,副教授,硕士生导师,主要从事山地灾害形成机制与防治方面的研究。E-mail: hn61886@163.com E-mail:zhongwei@imde.ac.cn
  • 作者简介:钟卫,男,1980年生,博士,高级工程师,硕士生导师,主要从事斜坡灾变机制及其控制技术的研究。
  • 基金资助:
    国家重点研发计划课题(No.2020YFD1100701)

Experimental study on soil arch behind anti-slide pile based on relative deformation method

ZHONG Wei1, ZHANG Shuai1, 2, HE Na2   

  1. 1. Key Laboratory of Mountain Hazards and Earth Surface Process, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China; 2. School of Civil Engineering, Henan Polytechnic University, Jiaozuo, Henan 454003, China
  • Received:2021-07-08 Revised:2022-02-21 Online:2022-10-10 Published:2022-10-03
  • Supported by:
    This work was supported by the National Key R&D Program of China(2020YFD1100701).

摘要: 为分析桩后土拱在滑动过程中的动态演化过程,设计了一种新型的土体相对变形监测系统,开展了物理模型试验和滑体强度参数分析试验,基于试验监测数据,引入了两个无量纲参数表征滑体相对变形程度和不均匀变形程度。试验结果表明:(1)基于桩后土拱变形与传递侧向力曲线特征,土拱演化可分为弹性形成阶段、塑性发展阶段和破坏阶段3个阶段。在破坏阶段观察到显著的三维破坏特征,在水平面上,土拱表现出成层的拱圈挤出破坏;在竖直面上,表现出中下部的滑体土率先开裂并塌落,然后在顶部出现悬链形状的裂缝。(2)随相对变形变化,桩后滑体强度参数在滑动过程中是处于一个动态的强化过程,就强化程度而言,黏聚力较内摩擦角更敏感。(3)前期相对靠后的滑体的相对变形程度与参数强化程度分别高于相对靠前的滑体和桩间滑体,因此,桩周滑体裂缝在向后发展过程中逐渐向桩间中心线发生偏转,在裂缝贯通后形成稳定支撑的拱形结构。

关键词: 土拱效应, 相对变形, 物理模型试验, 动态机制

Abstract: In order to analyze the dynamic evolution process of the soil arch behind anti-slide pile, a novel type of soil mass relative deformation monitoring system was designed, and a series of physical model tests was conducted. Two dimensionless parameters were introduced based on the monitoring data in the tests, for characterizing the relative deformation degree and uneven deformation degree of sliding mass. Some findings were observed. The evolution process of soil arch can be divided into three stages based on the curve characteristics of soil arch deformation and lateral thrust behind piles: elastic formation stage, plastic development stage and failure stage. And significant three-dimensional failure characteristics were observed in failure stage: on the horizontal plane, the soil arch exhibited layered arch ring extrusion failure; on the vertical plane, the soil in the middle parts of sliding mass first cracked and collapsed, and then a catenary-shaped crack appeared on the top of sliding mass. The strength parameters of the sliding mass around piles were in a dynamic strengthening process in the sliding process with the change of relative deformation. As far as the degree of strengthening was concerned, cohesion was more sensitive than angle of internal friction. The relative deformation degree and parameter strengthening degree of the sliding mass relatively backward in the early stage were higher than those of the sliding mass relatively forward. Therefore, the cracks in the sliding mass around the piles gradually deflected towards the center line between the piles in the process of cracks developing backward, and formed a stable supported arch structure after the cracks coalesced.

Key words: soil arch effect, relative deformation, physical model tests, dynamic mechanism

中图分类号: 

  • TU473.1
[1] 戴天毅, 肖世国, . 考虑路堤−加固区相互作用的刚性桩复合 地基沉降算法[J]. 岩土力学, 2022, 43(S1): 479-489.
[2] 闫国强, 殷跃平, 黄波林, 胡雷, . 三峡库区顺层灰岩岸坡劣化−溃屈灾变机制研究[J]. 岩土力学, 2022, 43(9): 2568-2580.
[3] 黎春林. 盾构开挖面三维曲面体破坏模型 及支护力计算方法研究[J]. 岩土力学, 2022, 43(8): 2092-2102.
[4] 邓友生, 李令涛, 彭程谱, 李龙, 刘俊聪, 付云博. 静动荷载下桩网结构路基模型试验研究[J]. 岩土力学, 2022, 43(8): 2149-2156.
[5] 张恒志, 徐长节, 何寨兵, 黄展军, 何小辉, . 基于离散元方法的不同挡墙变位模式下有 限土体主动土压力研究[J]. 岩土力学, 2022, 43(1): 257-267.
[6] 朱晟, 张远, 加力别克·阿哈力别克, 喻建清, 何兆升, . 基于增量分析的堆石坝瞬变-流变参数联合反演[J]. 岩土力学, 2021, 42(5): 1453-1461.
[7] 肖捷夫, 李云安, 胡勇, 张申, 蔡浚明, . 库水涨落和降雨条件下古滑坡变形特征 模型试验研究[J]. 岩土力学, 2021, 42(2): 471-480.
[8] 崔蓬勃, 朱永全, 刘勇, 朱正国, 潘英东, . 非饱和砂土隧道土拱效应模型试验 及颗粒流数值模拟研究[J]. 岩土力学, 2021, 42(12): 3451-3466.
[9] 张全, 黄波林, 郑嘉豪, 赵海林, 冯万里, 陈小婷, . 柱状危岩体压溃式崩塌产生涌浪预测分析[J]. 岩土力学, 2021, 42(10): 2845-2854.
[10] 鲍宁, 魏静, 陈建峰. 桩承式路堤土拱效应三维离散元分析[J]. 岩土力学, 2020, 41(S1): 347-354.
[11] 庄妍, 李劭邦, 崔晓艳, 董晓强, 王康宇, . 高铁荷载下桩承式路基动力响应及土拱效应研究[J]. 岩土力学, 2020, 41(9): 3119-3130.
[12] 刘克奇, 丁万涛, 陈瑞, 侯铭垒, . 盾构掌子面三维破坏模型构建与极限支护力计算[J]. 岩土力学, 2020, 41(7): 2293-2303.
[13] 程永辉, 胡胜刚, 王汉武, 张成. 深埋砂层旁压特征参数的深度效应研究[J]. 岩土力学, 2020, 41(6): 1881-1886.
[14] 黄宇华, 徐林荣, 周俊杰, 蔡雨, . 基于改进Terzarghi方法的桩网地基桩土应力计算[J]. 岩土力学, 2020, 41(2): 667-675.
[15] 王东坡, 陈政, 何思明, 陈克坚, 刘发明, 李明清, . 泥石流冲击桥墩动力相互作用物理模型试验[J]. 岩土力学, 2019, 40(9): 3363-3372.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .