岩土力学 ›› 2022, Vol. 43 ›› Issue (7): 1884-1898.doi: 10.16285/j.rsm.2021.1730
樊浩博1,周定坤2,刘勇2,宋玉香2,朱正国1,3, 朱永全1,高新强1,郭佳奇4
FAN Hao-bo1, ZHOU Ding-kun2, LIU Yong2, SONG Yu-xiang2, ZHU Zheng-guo1, 3, ZHU Yong-quan1, GAO Xin-qiang1, GUO Jia-qi4
摘要: 对于围岩中存在管道型溶腔的岩溶隧道而言,受地表强降雨及地下水的影响,管道型溶腔内极易积聚高水压力,进而引发衬砌开裂、渗漏水及涌水病害。为了探明管道型溶腔中高水压力对衬砌结构的影响,开展了富水管道型岩溶隧道衬砌结构力学响应模型试验,对不同溶腔位置及不同水头高度影响下的衬砌结构内力特征进行了研究。基于此,建立扩展工况的数值计算模型,进一步探究了不同溶腔直径、溶腔位置及溶腔水头高度对衬砌结构内力的影响。结果表明:当隧道周围存在管道型溶腔时,与溶腔接触位置的衬砌内侧承受较大的正弯矩,为衬砌结构的最不利受力位置;随着溶腔直径和溶腔内水头高度的增加,衬砌内力显著增大;溶腔所在位置影响着衬砌内力的分布,当溶腔位于隧道拱顶时,衬砌结构的抗水压能力最小。研究结果可为管道型岩溶隧道的结构设计及安全施工提供借鉴。
[1] | 刘斯宏, 沈超敏, 程德虎, 张呈斌, 毛航宇, . 土工袋加固膨胀土边坡降雨−日晒循环试验研究[J]. 岩土力学, 2022, 43(S2): 35-42. |
[2] | 汤炀, 刘干斌, 郑明飞, 史世雍, . 饱和粉土中相变能源桩热力响应模型试验研究[J]. 岩土力学, 2022, 43(S2): 282-290. |
[3] | 钟卫, 张 帅, 贺拿. 基于相对变形方法的桩后土拱模型试验研究[J]. 岩土力学, 2022, 43(S2): 315-326. |
[4] | 罗维平, 袁大军, 金大龙, 陆平, 陈健, 郭海鹏, . 富水砂层盾构开挖面支护压力与地层变形关系 离心模型试验研究[J]. 岩土力学, 2022, 43(S2): 345-354. |
[5] | 蒋凡, 刘华, 岳青, 杨文爽. 超大沉井基础取土下沉刃脚土压力变化规律研究[J]. 岩土力学, 2022, 43(S2): 431-442. |
[6] | 周昊, 陈国良, 何翔, 吴佳明, 张荣堂, 殷大伟, 袁坤彬, 武哲, . 岩土工程建筑信息模型集成与仿真关键技术研究[J]. 岩土力学, 2022, 43(S2): 443-453. |
[7] | 邓鹏海, 刘泉声, 黄兴, 潘玉丛, 伯音, . 水平层状软弱围岩破裂碎胀大变形机制 有限元−离散元耦合数值模拟研究[J]. 岩土力学, 2022, 43(S2): 508-523. |
[8] | 单治钢, 高上, 孙淼军, 陈雨雪, 李利平, 成帅, 周宗青, . 波浪作用下近海滑坡机制模型试验与 数值模拟研究[J]. 岩土力学, 2022, 43(S2): 541-552. |
[9] | 骆冠勇, 钟淼, 曹洪, 潘泓, . 砂土层中盾构掘进实测数据及数值模拟分析[J]. 岩土力学, 2022, 43(S2): 563-574. |
[10] | 袁维, 钟辉亚, 朱屹, 唐佳, 洪建飞, 王亚雄, 林杭, 万宁, 王安礼, . 基于数据融合的边坡临滑状态确定方法[J]. 岩土力学, 2022, 43(S2): 575-587. |
[11] | 丁扬, 熊晔, 陈孜孜, 吴晓寒, 王小波, . 灌注桩动力特性试验与数值模拟研究[J]. 岩土力学, 2022, 43(S2): 640-646. |
[12] | 刘博, 徐飞, 赵维刚, 高阳, . 隧道工程结构模型试验系统研究综述与展望[J]. 岩土力学, 2022, 43(S1): 452-468. |
[13] | 王心博, 王路君, 朱斌, 王鹏, 袁思敏, 陈云敏, . 水合物储层伺服降压开采模型试验研究[J]. 岩土力学, 2022, 43(9): 2360-2370. |
[14] | 邓波, 杨明辉, 王东星, 樊军伟, . 刚性挡墙后非饱和土破坏模式及主动土压力计算[J]. 岩土力学, 2022, 43(9): 2371-2382. |
[15] | 韦超, 朱鸿鹄, 高宇新, 王静, 张巍, 施斌, . 地面塌陷分布式光纤感测模型试验研究[J]. 岩土力学, 2022, 43(9): 2443-2456. |
|