岩土力学 ›› 2022, Vol. 43 ›› Issue (S2): 575-587.doi: 10.16285/j.rsm.2021.1692

• 数值分析 • 上一篇    下一篇

基于数据融合的边坡临滑状态确定方法

袁维1, 2,钟辉亚1,朱屹1,唐佳1,洪建飞3,王亚雄1, 林杭4,万宁5,王安礼5, 6   

  1. 1. 中国电建集团中南勘测设计研究院有限公司,湖南 长沙 410014;2. 石家庄铁道大学 土木工程学院,河北 石家庄 050043; 3. 河北钢铁集团滦县司家营铁矿有限公司,河北 唐山 063009;4. 中南大学 资源与安全工程学院,湖南 长沙 410012; 5. 贵州省水利水电勘测设计研究院有限公司,贵州 贵阳 550002;6. 贵州省质安交通工程监控检测中心有限责任公司,贵州 贵阳 550081
  • 收稿日期:2021-10-08 修回日期:2022-02-20 出版日期:2022-10-10 发布日期:2022-10-10
  • 通讯作者: 王安礼,男,1986年生,博士,高级工程师,主要从事岩土工程数值模拟方面的研究工作。E-mail: wang_anli@yeah.net E-mail:yuanweisuper001@126.com
  • 作者简介:袁维,男,1986年生,博士,副教授,主要从事工程地质灾害安全防控方面的研究工作。
  • 基金资助:
    河北省自然科学基金优秀青年基金项目(No.E2021210041);河北省教育厅重点项目(No.ZD2020333);贵州省基础研究计划(黔科合基础[2018]1107);贵州省科技支撑计划(黔科合支撑[2020]4Y046)。

Determination method of slope critical failure state based on monitoring data fusion

YUAN Wei1, 2, ZHONG Hui-ya1, ZHU Yi1, TANG Jia1, HONG Jian-fei3, WANG Ya-xiong1, LIN Hang4, WAN Ning5, WANG An-li5, 6   

  1. 1. PowerChina Zhongnan Engineering Corporation Limited, Changsha, Hunan 410014, China; 2. School of Civil Engineering, Shijiazhuang Tiedao University, Shijiazhuang, Hebei 050043, China; 3. Hebei Iron & Steel Group Luanxian Sijiaying Iron Ore Co., Ltd., Tangshan, Hebei 063009, China; 4. School of Resources and Safety Engineering, Central South University, Changsha, Hunan 410012, China; 5. Guizhou Survey and Design Research Institute for Water Resoures and Hydropower Co., Ltd., Guiyang, Guizhou 550002, China; 6. Guizhou Province Quality and Safety Traffic Engineering Monitoring and Inspection Center Co., Ltd., Guiyang, Guizhou 550081, China
  • Received:2021-10-08 Revised:2022-02-20 Online:2022-10-10 Published:2022-10-10
  • Supported by:
    This work was supported by the Outstanding Youth Fund Project of Natural Science Foundation of Hebei Province(E2021210041), the Key Project of Education Department of Hebei Province(ZD2020333), the Basic Research Program of Guizhou Province([2018]1107) and the Science and Technology Support Plan of Guizhou Province([2020]4Y046).

摘要: 安全监测及数值模拟是评估边坡稳定性状态的两种重要手段,但是,如何根据监测信息及数值模拟成果确定边坡的临界失稳状态一直是边坡工程领域关注的重点问题。首先基于层次聚类方法计算边坡不同类型状态变量监测点的欧式距离,根据距离大小筛选出边坡的有效监测点;然后,计算同种类型状态变量有效监测点的熵权值,采用熵权融合方法对有效监测点进行数据层融合,得到不同类型状态变量对应的融合监测指标曲线;其次,采用主成分分析法对多种数据层融合监测指标曲线进行特征层融合,得到可反映全部状态变量信息特征的综合监测信息曲线,进而构建了边坡渐进失稳过程中不同监测变量的信息挖掘融合框架;最后,提出了一种缓变曲线的变点搜索方法,采用该方法对综合监测信息曲线开展变点分析,搜索边坡状态渐进演化的突变点(即边坡临滑状态点)。将所提出的方法应用到某公路边坡临界失稳状态的确定中,结果表明,单个监测点或单个融合指标的累积值、变化速率作为边坡失稳判据存在不唯一性,融合多种监测数据建立的综合监测信息序列可以较好地反映边坡状态演化特征,可避免单一状态变量的单一监测点数据对边坡状态的误判,验证了所提方法的可行性和适用性。

关键词: 临滑状态, 监测指标, 数据融合, 安全监测, 数值模拟

Abstract: Safety monitoring and numerical simulation are two significant tools for assessing the slope stability. However, how to determine the slope critical failure state according to the monitoring data and numerical simulation results has always been the focus of the slope engineering. In this study, the Euclidean distances among the slope monitoring points of different types of state variables are calculated based on the hierarchical clustering method, and the effective monitoring points of slope are selected according to the distance. Then, the entropy weight of time series of effective monitoring points of the same type of state variables is calculated, and the entropy weight fusion method is used to perform data layer fusion for effective monitoring points of the same type of state variables, and the fusion monitoring index curves corresponding to different types of state variables are obtained. After that, principal component analysis method is adopted to perform feature level fusion for various fusion monitoring index curves, and a comprehensive monitoring information curve that can reflect the information characteristics of all state variables is obtained, and then an information mining and fusion framework for different monitoring variables in the process of slope progressive instability is constructed by using a variety of mathematical and statistical methods. Finally, a change point search method of graded curve is proposed to search the abrupt change point of slope state gradual evolution (i.e. slope critical failure state). The proposed method is applied to determining the critical instability of a highway slope. The results show that the cumulative value and change rate of a single monitoring point or a single fusion index are not unique as the criterion of slope instability. The comprehensive monitoring information sequence established by integrating multiple monitoring data can better reflect the evolution characteristics of slope state and avoid misjudgment of slope state by data of a single monitoring point with a single state variable, which verifies the feasibility and applicability of the proposed method.

Key words: critical failure state, monitoring index, data fusion, safety monitoring, numerical simulation

中图分类号: 

  • TU457
[1] 蒋凡, 刘华, 岳青, 杨文爽. 超大沉井基础取土下沉刃脚土压力变化规律研究[J]. 岩土力学, 2022, 43(S2): 431-442.
[2] 周昊, 陈国良, 何翔, 吴佳明, 张荣堂, 殷大伟, 袁坤彬, 武哲, . 岩土工程建筑信息模型集成与仿真关键技术研究[J]. 岩土力学, 2022, 43(S2): 443-453.
[3] 邓鹏海, 刘泉声, 黄兴, 潘玉丛, 伯音, . 水平层状软弱围岩破裂碎胀大变形机制 有限元−离散元耦合数值模拟研究[J]. 岩土力学, 2022, 43(S2): 508-523.
[4] 骆冠勇, 钟淼, 曹洪, 潘泓, . 砂土层中盾构掘进实测数据及数值模拟分析[J]. 岩土力学, 2022, 43(S2): 563-574.
[5] 丁扬, 熊晔, 陈孜孜, 吴晓寒, 王小波, . 灌注桩动力特性试验与数值模拟研究[J]. 岩土力学, 2022, 43(S2): 640-646.
[6] 阮滨, 吉瀚文, 王苏阳, 贺鸿俊, 苗雨. 基于台阵观测的基岩地震动入射波分离 方法及数值验证[J]. 岩土力学, 2022, 43(9): 2615-2623.
[7] 樊浩博, 周定坤, 刘勇, 宋玉香, 朱正国, 朱永全, 高新强, 郭佳奇, . 富水管道型岩溶隧道衬砌结构力学响应特征研究[J]. 岩土力学, 2022, 43(7): 1884-1898.
[8] 张革, 曹玲, 王成汤, . 考虑多晶冰软化特性的弹塑性损伤本构 模型开发及应用[J]. 岩土力学, 2022, 43(7): 1969-1977.
[9] 张婵青, 何凤飞, 姜顺航, 曾子真, 熊峰, 陈江, . 土体含水率监测的移动点热源法研究[J]. 岩土力学, 2022, 43(7): 2025-2034.
[10] 李宁, 潘行, 张茂建, 张慧莉, 李昕珍, 许建聪, . 降雨形式对毛细阻滞覆盖层防渗性能的影响研究[J]. 岩土力学, 2022, 43(6): 1546-1556.
[11] 池小楼, 杨科, 刘文杰, 付强, 魏祯, . 大倾角煤层分层综采再生顶板破断规律研究[J]. 岩土力学, 2022, 43(5): 1391-1400.
[12] 贺勇, 胡广, 张召, 娄伟, 邹艳红, 李星, 张可能, . 污染场地六价铬迁移转化机制与数值模拟研究[J]. 岩土力学, 2022, 43(2): 528-538.
[13] 魏天宇, 王旭宏, 吕涛, 胡大伟, 周辉, 洪雯. 湿化膨胀与掺砂率对混合型缓冲材料 THM耦合过程的影响分析[J]. 岩土力学, 2022, 43(2): 549-562.
[14] 侯晓萍, 樊恒辉. 基于COMSOL Multiphysics的非饱和 裂隙土降雨入渗特性研究[J]. 岩土力学, 2022, 43(2): 563-572.
[15] 马成昊, 朱长歧, 刘海峰, 崔翔, 王天民, 姜开放, 易明星, . 土的颗粒形貌研究现状及展望[J]. 岩土力学, 2021, 42(8): 2041-2058.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .