岩土力学 ›› 2022, Vol. 43 ›› Issue (5): 1391-1400.doi: 10.16285/j.rsm.2021.1563

• 数值分析 • 上一篇    下一篇

大倾角煤层分层综采再生顶板破断规律研究

池小楼1, 2,杨科1, 2, 3,刘文杰1, 2,付强1, 2,魏祯1, 2   

  1. 1. 安徽理工大学 深部煤矿采动响应与灾害防控国家重点实验室,安徽 淮南 232001; 2. 安徽理工大学 矿业工程学院,安徽 淮南 232001;3. 合肥综合性国家科学中心 能源研究院,安徽 合肥 230031
  • 收稿日期:2021-09-14 修回日期:2022-01-17 出版日期:2022-05-11 发布日期:2022-05-02
  • 通讯作者: 杨科,男,1979年生,博士,教授,博士生导师,主要从事多场演化与灾害防控、煤炭安全精准开采等方面的研究。 E-mail:yksp2003@163.com E-mail:xlchi@aust.edu.cn
  • 作者简介:池小楼,男,1992年生,博士,讲师,主要从事大倾角煤层安全开采方面的研究。
  • 基金资助:
    安徽高校自然科学研究重点项目(No. KJ2021A0456);安徽理工大学引进人才科研启动项目(No. 2021yjrc10);国家自然科学基金重点项目(No. 51634007)

Study of caving pattern of regenerated roof in fully-mechanized slicing mining of steeply dipping coal seam

CHI Xiao-lou1, 2, YANG Ke1, 2, 3, LIU Wen-jie1, 2, FU Qiang1, 2, WEI Zhen1, 2   

  1. 1. State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan, Anhui 232001, China; 2. School of Mining Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China; 3. Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230031, China
  • Received:2021-09-14 Revised:2022-01-17 Online:2022-05-11 Published:2022-05-02
  • Supported by:
    This work was supported by the Key Project Natural Science Research of Anhui Universities (KJ2021A0456), the Introduction of Talents Research Project of Anhui University of Science and Technology (2021yjrc10) and the Key Project of National Natural Science Foundation of China (51634007).

摘要: 针对大倾角厚软煤层下分层安全综采问题,结合淮南矿区潘北煤矿1212(3)大倾角厚软煤层分层综采下分层工作面地质与工程条件,综合运用基于数字散斑、声发射监测与分布式光纤传感技术的物理模拟试验、基于煤系地层赋存禀赋建模技术的数值模拟试验相结合的研究手段,开展了下分层开采再生顶板破断倾向分区演化、再生岩体变形声发射能量与光纤应变响应规律及应力分布特征研究。结果表明:再生顶板破断由其破断岩块滑移、低中位悬臂梁和高位铰接岩梁断裂组成,双梁破断是引起下分层支架失稳的关键所在。下分层中上部双梁破断声发射能量呈高度聚集且持续时间短,光纤感知低位悬臂梁破断且中上部光纤应变峰值高,下分层中上部是支架与再生顶板稳定性控制的重点区域。下分层下部再生顶板破断岩块充填密实且粒径小,是架间与架前岩块漏冒多发区域。下分层再生顶板中形成高应力组成的应力拱,距采空区高度约30 m,双梁破断主要发生在拱内,拱中岩体破断对支架具有一定的冲垮作用。

关键词: 大倾角煤层, 下分层开采, 围岩破坏, 相似模拟, 数值模拟

Abstract: To solve the problem of safe fully-mechanized mining in steeply dipped thick soft coal seam, physical modelling integrated with digital image correlation (DIC), acoustic emission (AE) and distributed optical fiber sensing (DOFS) technology, and the numerical simulations were conducted in this study. Based on the geological and engineering conditions of the 1212 (3) working face of Panbei Mine in Huainan mining area, the evolution of the fracture tendency zone of the regenerated roof during the lower slice mining was studied. The acoustic emission characteristics and the fiber strain responses of the regenerated rock mass were deeply investigated. The results show that the caving of regenerated roof consists of rock slippage, fracture of the low and mid-level cantilever beams and high-level articulated rock beams. Furthermore, the fracture of the double-beams is the key to the instability of the support in lower slice. The acoustic emission energies from the upper and middle parts of the lower slice are highly concentrated with short durations. Moreover, the fiber strain results indicate that the breakage occurs in the low cantilever beam and the high strain peak appears in the upper and middle parts. The middle and upper parts of the lower slice are the key areas for the stability control of the support and the regenerated roof. The lower part of the regenerated roof is densely filled with fragmented rock with much smaller grain size, where the rock leakage between and in front of the shelf is commonly encountered. A high-stress arch is formed in the regenerated roof of the lower slice, which is approximately 30 m in height from the goaf. The fracture of the double-beams mainly occurs in the arch, and the rock breakage in the arch has a certain collapse effect on the support.

Key words: steeply dipping coal seam, lower slicing mining, surrounding rock failure, similar simulation, numerical simulation

中图分类号: 

  • TD 325
[1] 陈磊, 张强, 贾朝军, 雷明锋, 黄娟, 胡晶, . 强降雨对库岸堆积体边坡稳定性影响的离心模型试验和数值模拟研究[J]. 岩土力学, 2024, 45(5): 1423-1434.
[2] 周慧颖, 李树忱, 王曼灵, 袁超, 张俊艇, 冯健鹏, . 气孔杏仁状玄武岩随机三维模型构建与 单轴压缩力学行为研究[J]. 岩土力学, 2024, 45(4): 1214-1232.
[3] 文磊, 刘 钟, 马晓华, 张振. 粉土地基中劲性复合桩抗压承载特性与荷载传递机制研究[J]. 岩土力学, 2024, 45(2): 511-524.
[4] 刘新荣, 王浩, 郭雪岩, 罗新飏, 周小涵, 许彬, . 考虑消落带岩体劣化影响的典型危岩岸坡稳定性研究[J]. 岩土力学, 2024, 45(2): 563-576.
[5] 朱寅斌, 李长冬, 周佳庆, 项林语, 姜茜慧, 朱文宇, . 考虑基质渗透性的粗糙单裂隙非达西流动特性研究[J]. 岩土力学, 2024, 45(2): 601-611.
[6] 华涛, 申林方, 王志良, 李泽, 徐则民. 基于近场动力学的岩石水力压裂数值模拟及裂隙网络定量分析[J]. 岩土力学, 2024, 45(2): 612-622.
[7] 黄生根, 张义, 霍昊, 陈常青. 软土地区深基坑支护工程格构柱变形规律研究[J]. 岩土力学, 2023, 44(S1): 533-538.
[8] 王凯, 付强, 徐超, 艾子博, 李丹, 王磊, 舒龙勇, . 原生煤岩组合体界面力学效应数值模拟研究[J]. 岩土力学, 2023, 44(S1): 623-633.
[9] 乔亚飞, 闫凯, 赵腾腾, 丁文其, . 软土地区超深圆形竖井的坑底隆起特性与机制[J]. 岩土力学, 2023, 44(9): 2707-2716.
[10] 张坤勇, 张梦, 孙斌, 李福东, 简永洲, . 考虑时空效应的软土狭长型深基坑地连墙变形计算方法[J]. 岩土力学, 2023, 44(8): 2389-2399.
[11] 尹鑫晟, 舒营, 梁禄钜, 张世民, . 考虑渗流的饱和粉土地层盾构开挖面稳定分析[J]. 岩土力学, 2023, 44(7): 2005-2016.
[12] 季雨坤, 王钦科, 赵国良, 张健, 马建林, . 斜坡上嵌岩抗拔桩竖向承载变形特性模型试验及数值模拟[J]. 岩土力学, 2023, 44(6): 1604-1614.
[13] 孙彦晓, 刘松玉, 童立元, 王峻, 崔佳, 李世龙, 李敏, . 长江漫滩区明挖隧道基坑降承压水优化分析[J]. 岩土力学, 2023, 44(6): 1800-1810.
[14] 贾科敏, 许成顺, 杜修力, 张小玲, 宋佳, 苏卓林, . 可液化倾斜场地的侧向扩展机制分析[J]. 岩土力学, 2023, 44(6): 1837-1848.
[15] 王田龙, 陈从新, 夏开宗, 邵勇, 刘轩廷, 杨括宇, 周意超, . 陡倾结构金属矿山采空区围岩破坏机制研究[J]. 岩土力学, 2023, 44(5): 1487-1500.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 唐明明,王芝银,马兰平,曾志华,张之沛. 油气管道穿越黄土冲沟的管线设计参数研究[J]. , 2010, 31(4): 1314 -1318 .
[2] 李俊才,纪广强,宋桂华,张 琼,王志亮,严小敏. 高层建筑疏桩筏板基础现场实测与分析[J]. , 2009, 30(4): 1018 -1022 .
[3] 魏 宁,李小春,王 燕,谷志孟. 城市垃圾填埋场甲烷资源量与利用前景[J]. , 2009, 30(6): 1687 -1692 .
[4] 牛文杰,叶为民,刘绍刚,禹海涛. 考虑饱和-非饱和渗流的土坡极限分析[J]. , 2009, 30(8): 2477 -2482 .
[5] 尹宏磊,徐千军,李仲奎. 膨胀变形对膨胀土边坡稳定性的影响[J]. , 2009, 30(8): 2506 -2510 .
[6] 林达明,尚彦军,孙福军,孙元春,吴锋波,刘志强. 岩体强度估算方法研究及应用[J]. , 2011, 32(3): 837 -842 .
[7] 李 辉 ,晏鄂川 ,杨建国 ,吕 坤 . 库水条件下滑坡体与挡墙相互作用研究[J]. , 2012, 33(5): 1593 -1600 .
[8] 胡长明 ,梅 源 ,王雪艳 . 离石地区湿陷性黄土地基强夯参数的试验研究[J]. , 2012, 33(10): 2903 -2909 .
[9] 黄志鹏 ,董燕军 ,廖年春 ,尹健民 ,周江平 . 锦屏一级水电站左岸开挖高边坡变形监测分析[J]. , 2012, 33(S2): 235 -242 .
[10] 周小文 , 濮家骝 . 砂土中隧洞开挖引起的地面沉降试验研究[J]. , 2002, 23(5): 559 -563 .