岩土力学 ›› 2022, Vol. 43 ›› Issue (5): 1391-1400.doi: 10.16285/j.rsm.2021.1563

• 数值分析 • 上一篇    下一篇

大倾角煤层分层综采再生顶板破断规律研究

池小楼1, 2,杨科1, 2, 3,刘文杰1, 2,付强1, 2,魏祯1, 2   

  1. 1. 安徽理工大学 深部煤矿采动响应与灾害防控国家重点实验室,安徽 淮南 232001; 2. 安徽理工大学 矿业工程学院,安徽 淮南 232001;3. 合肥综合性国家科学中心 能源研究院,安徽 合肥 230031
  • 收稿日期:2021-09-14 修回日期:2022-01-17 出版日期:2022-05-11 发布日期:2022-05-02
  • 通讯作者: 杨科,男,1979年生,博士,教授,博士生导师,主要从事多场演化与灾害防控、煤炭安全精准开采等方面的研究。 E-mail:yksp2003@163.com E-mail:xlchi@aust.edu.cn
  • 作者简介:池小楼,男,1992年生,博士,讲师,主要从事大倾角煤层安全开采方面的研究。
  • 基金资助:
    安徽高校自然科学研究重点项目(No. KJ2021A0456);安徽理工大学引进人才科研启动项目(No. 2021yjrc10);国家自然科学基金重点项目(No. 51634007)

Study of caving pattern of regenerated roof in fully-mechanized slicing mining of steeply dipping coal seam

CHI Xiao-lou1, 2, YANG Ke1, 2, 3, LIU Wen-jie1, 2, FU Qiang1, 2, WEI Zhen1, 2   

  1. 1. State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan, Anhui 232001, China; 2. School of Mining Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China; 3. Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230031, China
  • Received:2021-09-14 Revised:2022-01-17 Online:2022-05-11 Published:2022-05-02
  • Supported by:
    This work was supported by the Key Project Natural Science Research of Anhui Universities (KJ2021A0456), the Introduction of Talents Research Project of Anhui University of Science and Technology (2021yjrc10) and the Key Project of National Natural Science Foundation of China (51634007).

摘要: 针对大倾角厚软煤层下分层安全综采问题,结合淮南矿区潘北煤矿1212(3)大倾角厚软煤层分层综采下分层工作面地质与工程条件,综合运用基于数字散斑、声发射监测与分布式光纤传感技术的物理模拟试验、基于煤系地层赋存禀赋建模技术的数值模拟试验相结合的研究手段,开展了下分层开采再生顶板破断倾向分区演化、再生岩体变形声发射能量与光纤应变响应规律及应力分布特征研究。结果表明:再生顶板破断由其破断岩块滑移、低中位悬臂梁和高位铰接岩梁断裂组成,双梁破断是引起下分层支架失稳的关键所在。下分层中上部双梁破断声发射能量呈高度聚集且持续时间短,光纤感知低位悬臂梁破断且中上部光纤应变峰值高,下分层中上部是支架与再生顶板稳定性控制的重点区域。下分层下部再生顶板破断岩块充填密实且粒径小,是架间与架前岩块漏冒多发区域。下分层再生顶板中形成高应力组成的应力拱,距采空区高度约30 m,双梁破断主要发生在拱内,拱中岩体破断对支架具有一定的冲垮作用。

关键词: 大倾角煤层, 下分层开采, 围岩破坏, 相似模拟, 数值模拟

Abstract: To solve the problem of safe fully-mechanized mining in steeply dipped thick soft coal seam, physical modelling integrated with digital image correlation (DIC), acoustic emission (AE) and distributed optical fiber sensing (DOFS) technology, and the numerical simulations were conducted in this study. Based on the geological and engineering conditions of the 1212 (3) working face of Panbei Mine in Huainan mining area, the evolution of the fracture tendency zone of the regenerated roof during the lower slice mining was studied. The acoustic emission characteristics and the fiber strain responses of the regenerated rock mass were deeply investigated. The results show that the caving of regenerated roof consists of rock slippage, fracture of the low and mid-level cantilever beams and high-level articulated rock beams. Furthermore, the fracture of the double-beams is the key to the instability of the support in lower slice. The acoustic emission energies from the upper and middle parts of the lower slice are highly concentrated with short durations. Moreover, the fiber strain results indicate that the breakage occurs in the low cantilever beam and the high strain peak appears in the upper and middle parts. The middle and upper parts of the lower slice are the key areas for the stability control of the support and the regenerated roof. The lower part of the regenerated roof is densely filled with fragmented rock with much smaller grain size, where the rock leakage between and in front of the shelf is commonly encountered. A high-stress arch is formed in the regenerated roof of the lower slice, which is approximately 30 m in height from the goaf. The fracture of the double-beams mainly occurs in the arch, and the rock breakage in the arch has a certain collapse effect on the support.

Key words: steeply dipping coal seam, lower slicing mining, surrounding rock failure, similar simulation, numerical simulation

中图分类号: 

  • TD 325
[1] 李宁, 潘行, 张茂建, 张慧莉, 李昕珍, 许建聪, . 降雨形式对毛细阻滞覆盖层防渗性能的影响研究[J]. 岩土力学, 2022, 43(6): 1546-1556.
[2] 贺勇, 胡广, 张召, 娄伟, 邹艳红, 李星, 张可能, . 污染场地六价铬迁移转化机制与数值模拟研究[J]. 岩土力学, 2022, 43(2): 528-538.
[3] 魏天宇, 王旭宏, 吕涛, 胡大伟, 周辉, 洪雯. 湿化膨胀与掺砂率对混合型缓冲材料 THM耦合过程的影响分析[J]. 岩土力学, 2022, 43(2): 549-562.
[4] 侯晓萍, 樊恒辉. 基于COMSOL Multiphysics的非饱和 裂隙土降雨入渗特性研究[J]. 岩土力学, 2022, 43(2): 563-572.
[5] 董伟, 王学滨, . 岩土工程相似模拟试验观测的可靠 子区数字图像相关方法[J]. 岩土力学, 2021, 42(9): 2525-2534.
[6] 马成昊, 朱长歧, 刘海峰, 崔翔, 王天民, 姜开放, 易明星, . 土的颗粒形貌研究现状及展望[J]. 岩土力学, 2021, 42(8): 2041-2058.
[7] 崔溦, 王利新, 江志安, 王超, 王枭华, 张社荣, . 基于修正立方定律的岩体粗糙裂隙网络 注浆过程模拟研究[J]. 岩土力学, 2021, 42(8): 2250-2258.
[8] 朱淳, 何满潮, 张晓虎, 陶志刚, 尹乾, 李利峰, . 恒阻大变形锚杆非线性力学模型 及恒阻行为影响参数分析[J]. 岩土力学, 2021, 42(7): 1911-1924.
[9] 王兆耀, 刘红军, 杨奇, 赵真, 胡瑞庚, . 波流作用下大直径单桩的局部冲刷特征分析[J]. 岩土力学, 2021, 42(4): 1178-1185.
[10] 姚精明, 许自文, 王建, 王路. 锚杆−泡沫铝联合支护防治冲击地压试验研究[J]. 岩土力学, 2021, 42(3): 620-626.
[11] 陈猛, 崔秀文, 颜鑫, 王浩, 王二磊. 岩石−钢纤维混凝土复合层抗压强度预测模型[J]. 岩土力学, 2021, 42(3): 638-646.
[12] 石峰, 卢坤林, 尹志凯. 平移模式下刚性挡土墙三维被动滑裂面的确定与土压力计算方法研究[J]. 岩土力学, 2021, 42(3): 735-745.
[13] 李红星, 冯世进, 何邵华, 张晓磊, 孙达明, . 砂土场地光热发电新型高强预应力混凝土短桩 基础受力特性研究[J]. 岩土力学, 2021, 42(12): 3217-3226.
[14] 王东坡, 何启维, 刘彦辉, 温继伟, 李伟, . 滚石冲击改进型开口帘式网耗能机制研究[J]. 岩土力学, 2021, 42(12): 3356-3365.
[15] 梅锦玲, 曹洪, 骆冠勇, 潘泓, . 准三维有限元模型在多层地基区域渗流中 的扩展与适宜性分析[J]. 岩土力学, 2021, 42(12): 3428-3439.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .