岩土力学 ›› 2021, Vol. 42 ›› Issue (3): 735-745.doi: 10.16285/j.rsm.2020.1298

• 基础理论与实验研究 • 上一篇    下一篇

平移模式下刚性挡土墙三维被动滑裂面的确定与土压力计算方法研究

石峰,卢坤林,尹志凯   

  1. 合肥工业大学 土木与水利工程学院,安徽 合肥 230009
  • 收稿日期:2020-08-27 修回日期:2021-01-26 出版日期:2021-03-11 发布日期:2021-03-17
  • 通讯作者: 卢坤林,男,1980年生,博士,副教授,硕士生导师,主要研究方向为岩土工程、防灾减灾工程、地质工程、交通工程。E-mail: lukunlin@hfut.edu.cn E-mail:903909411@qq.com
  • 作者简介:石峰,男,1994年生,硕士研究生,主要研究方向为岩土工程和地下工程
  • 基金资助:
    安徽省自然科学基金项目(No.1508085QE87)。

Determination of three-dimensional passive slip surface of rigid retaining walls in translational failure mode and calculation of earth pressures

SHI Feng, LU Kun-lin, YIN Zhi-kai   

  1. School of Civil Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
  • Received:2020-08-27 Revised:2021-01-26 Online:2021-03-11 Published:2021-03-17
  • Supported by:
    This work was supported by Anhui Science Foundation(1508085QE87).

摘要: 挡土墙后三维被动滑裂面的空间形态难以确定。基于数值模拟,取墙?土接触面摩擦角比值δ/? = 0(δ为墙?土接触面摩擦角,?为土体内摩擦角),采用薄板光顺样条函数搜索出不同土体内摩擦角下挡土墙端部三维滑裂面,类比地基承载力破坏对不同土体内摩擦角下挡土墙端部三维滑裂面进行函数方程的拟合,拟合效果较好,并归纳总结挡土墙端部三维滑裂面方程。在刚性挡土墙平移模式、墙背直立、填土水平且为无黏性土、δ/? = 0等条件下,基于挡土墙端部三维滑裂面方程,求出三维滑裂面的体积。通过力学分析推导了一种三维被动土压力计算方法,并对该方法进行了验证分析。分析结果表明:相较于Soubra被动土压力系数,计算方法得出的三维土压力系数更加接近数值模拟被动土压力系数。三维计算被动土压力系数和朗肯被动土压力系数在挡土墙长深比小于4的时候有明显的差异。随着挡土墙的长深比的增大和土体内摩擦角的减小,三维计算被动土压力系数趋向朗肯被动土压力系数,三维计算被动土压力合力作用点的位置趋向朗肯被动土压力合力作用点位置。

关键词: 刚性挡土墙, 平移模式, 数值模拟, 滑裂面, 被动土压力, 计算方法

Abstract: It is usually difficult to determine the spatial form of three-dimensional passive slip surfaces behind retaining walls. Based on numerical simulation, this paper assumes friction angle ratio of the wall-soil contact surface to be zero (δ/? = 0), and uses the thin-plate smoothing spline function to search for the three-dimensional slip surface at the end of retaining wall under different internal friction angles of soil mass. By analogy with the failure of foundation bearing capacity, an equation is proposed to curve fit the three-dimensional slip surface, and the equation for three-dimensional slip surface at the end of the retaining wall is summarized. For translational failure mode of rigid retaining walls with upright wall back, horizontal filling level and non-cohesive soil, δ/? = 0, the volume of sliding body behind the wall is calculated based on the three-dimensional slip surface equation. The calculation of three-dimensional passive earth pressure is deduced, and verification is carried out. The results are obtained as follows: (1)Compared with the Soubra passive earth pressure coefficient, the three-dimensional earth pressure coefficient obtained by the proposed method in this paper is closer to the numerical simulation result; (2)There is a significant difference between the three-dimensional passive earth pressure coefficient and Rankine passive earth pressure coefficient when the length-to-depth ratio of the wall is less than 4.0. As the length-to-depth ratio increases and the soil internal friction angle decreases, the three-dimensional passive earth pressure coefficient reduces to the Rankine’ value, and the position of the three-dimensional passive earth pressure resultant action point tends to be the position of the Rankine’s point.

Key words: rigid retaining wall, translational failure mode, numerical simulation, slip surface, passive earth pressure

中图分类号: 

  • TU432
[1] 王崇宇, 刘晓平, 张家强, 曹周红, . 刚性墙后有限宽度土体被动滑裂面特征试验研究[J]. 岩土力学, 2021, 42(7): 1839-1849.
[2] 朱淳, 何满潮, 张晓虎, 陶志刚, 尹乾, 李利峰, . 恒阻大变形锚杆非线性力学模型 及恒阻行为影响参数分析[J]. 岩土力学, 2021, 42(7): 1911-1924.
[3] 王兆耀, 刘红军, 杨奇, 赵真, 胡瑞庚, . 波流作用下大直径单桩的局部冲刷特征分析[J]. 岩土力学, 2021, 42(4): 1178-1185.
[4] 陈猛, 崔秀文, 颜鑫, 王浩, 王二磊. 岩石−钢纤维混凝土复合层抗压强度预测模型[J]. 岩土力学, 2021, 42(3): 638-646.
[5] 金爱兵, 陈帅军, 赵安宇, 孙浩, 张玉帅, . 基于无人机摄影测量的露天矿边坡数值模拟[J]. 岩土力学, 2021, 42(1): 255-264.
[6] 李军, 翟文宝, 陈朝伟, 柳贡慧, 周英操, . 基于零厚度内聚力单元的水力裂缝 随机扩展方法研究[J]. 岩土力学, 2021, 42(1): 265-279.
[7] 孟敏强, 王磊, 蒋翔, 汪成贵, 刘汉龙, 肖杨, . 基于尺寸效应的粗粒土单颗粒破碎试验及数值模拟[J]. 岩土力学, 2020, 41(9): 2953-2962.
[8] 张慧姐, 曹文贵, 刘涛. 基于主应力迹线分层的挡墙被动土压力分析方法[J]. 岩土力学, 2020, 41(9): 3022-3030.
[9] 岳建勇. 地铁交通引起的建筑物振动实测与数值模拟分析[J]. 岩土力学, 2020, 41(8): 2756-2764.
[10] 邓玮婷, 丁选明, 彭宇, . 珊瑚砂地基中膨胀混凝土桩竖向受压承载性能研究[J]. 岩土力学, 2020, 41(8): 2814-2820.
[11] 毛浩宇, 徐奴文, 李彪, 樊义林, 吴家耀, 孟国涛, . 基于离散元模拟和微震监测的白鹤滩水电站左岸地下厂房稳定性分析[J]. 岩土力学, 2020, 41(7): 2470-2484.
[12] 史林肯, 周辉, 宋明, 卢景景, 张传庆, 路新景, . 深部复合地层TBM开挖扰动模型试验研究[J]. 岩土力学, 2020, 41(6): 1933-1943.
[13] 张振, 张朝, 叶观宝, 王萌, 肖彦, 程义, . 劲芯水泥土桩承载路堤渐进式失稳破坏机制[J]. 岩土力学, 2020, 41(6): 2122-2131.
[14] 苏杰, 周正华, 李小军, 董青, 李玉萍, 陈柳. 基于偏振特性的下孔法剪切波到时判别问题探讨[J]. 岩土力学, 2020, 41(4): 1420-1428.
[15] 杨高升, 白冰, 姚晓亮, . 高含冰量冻土路基融化固结规律研究[J]. 岩土力学, 2020, 41(3): 1010-1018.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .
[2] 张文杰,陈云敏. 垃圾填埋场抽水试验及降水方案设计[J]. , 2010, 31(1): 211 -215 .
[3] 宫伟力,安里千,赵海燕,毛灵涛. 基于图像描述的煤岩裂隙CT图像多尺度特征[J]. , 2010, 31(2): 371 -376 .
[4] 万 智,董 辉,刘宝琛. 基于正交设计下SVM滑坡变形时序回归预测的超参数选择[J]. , 2010, 31(2): 503 -508 .
[5] 孙曦源,栾茂田,唐小微. 饱和软黏土地基中桶形基础水平承载力研究[J]. , 2010, 31(2): 667 -672 .
[6] 谭峰屹,姜志全,李仲秋,颜惠和. 附加质量法在昆明新机场填料压实密度检测中的应用研究[J]. , 2010, 31(7): 2214 -2218 .
[7] 柴 波,殷坤龙,肖拥军. 巴东新城区库岸斜坡软弱带特征[J]. , 2010, 31(8): 2501 -2506 .
[8] 王光进,杨春和,张 超,马洪岭,孔祥云,侯克鹏. 超高排土场的粒径分级及其边坡稳定性分析研究[J]. , 2011, 32(3): 905 -913 .
[9] 李 敏,柴寿喜,王晓燕,魏 丽. 以强度增长率评价麦秸秆加筋盐渍土的加筋效果[J]. , 2011, 32(4): 1051 -1056 .
[10] 杨 骁,蔡雪琼. 考虑横向效应饱和黏弹性土层中桩的纵向振动[J]. , 2011, 32(6): 1857 -1863 .