岩土力学 ›› 2020, Vol. 41 ›› Issue (9): 2953-2962.doi: 10.16285/j.rsm.2019.2000

• 基础理论与实验研究 • 上一篇    下一篇

基于尺寸效应的粗粒土单颗粒破碎试验及数值模拟

孟敏强1,王磊1,蒋翔1,汪成贵1,刘汉龙1, 2, 3,肖杨1, 2, 3, 4   

  1. 1. 重庆大学 土木工程学院,重庆 400045;2. 重庆大学 山地城镇建设与新技术教育部重点实验室,重庆 400045;3. 库区环境地质灾害防治国家地方联合工程研究中心(重庆),重庆 400045;4. 中国矿业大学 深部岩土力学与地下工程国家重点实验室,江苏 徐州 221116
  • 收稿日期:2019-11-25 修回日期:2020-03-19 出版日期:2020-09-11 发布日期:2020-10-21
  • 通讯作者: 肖杨,男,1982年生,博士,教授,主要从事粗粒土的力学特性及本构模型方面的研究工作。E-mail: hhuxyanson@163.com E-mail: mengmq19911206@163.com
  • 作者简介:孟敏强,男,1991年生,博士研究生,主要从事粗粒土的颗粒破碎特性方面的研究。
  • 基金资助:
    国家自然科学基金项目(No.51922024,No.51509024);中央高校基本科研业务费(No.2019CDXYTM0033);国家重点实验室开放基金(No.SKLGDUEK1810)。

Single-particle crushing test and numerical simulation of coarse grained soil based on size effect

MENG Min-qiang1, WANG Lei1, JIANG Xiang1, WANG Cheng-gui1, LIU Han-long1, 2, 3, XIAO Yang1, 2, 3, 4   

  1. 1. School of Civil Engineering, Chongqing University, Chongqing 400045, China; 2. Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing University, Chongqing 400045, China; 3. National Joint Engineering Research Center of Geohazards Prevention in the Reservoir Areas (Chongqing), Chongqing 400045, China; 4. State Key Laboratory for Geomechanics & Deep Underground Engineering, China University of Mining & Technology, Xuzhou, Jiangsu 221116, China
  • Received:2019-11-25 Revised:2020-03-19 Online:2020-09-11 Published:2020-10-21
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(51922024, 51509024); the Fundamental Research Funds for the Central Universities(2019CDXYTM0033) and the State Key Laboratory for Geomechanics & Deep Underground Engineering, China University of Mining & Technology(SKLGDUEK1810).

摘要: 在外荷载等因素作用下,粗粒土易发生颗粒破碎。对泥岩和砂岩颗粒进行了一系列的单颗粒破碎试验,基于尺寸效应和颗粒破碎分形模型,研究了单颗粒破碎强度、破碎能量及Weibull模量等与分形维数间的关系。利用PFC3D对单颗粒破碎过程进行分析,并与试验数据对比,验证了数值程序的可靠性;随后扩展到大颗粒粒径,分析了其单破碎强度及破碎能量。结果表明:在同类试验条件下,不同材料所得的分形维数是不同的;不同粒径砂岩的破碎程度均大于泥岩;单颗粒破碎强度具有明显的尺寸效应;单颗粒破碎强度与破碎能量均可通过分形维数与颗粒粒径预测得出;修正后的Weibull模量也可通过分形维数得出;数值模拟结果与试验结果及预测结果基本一致;大颗粒粒径单颗粒破碎强度模拟结果与预测结果基本一致,破碎能量稍有差异,需进一步试验验证。研究成果可为获取大粒径粗粒土的单颗粒强度与变形特性提供参考。

关键词: 尺寸效应, 分形维数, 单颗粒破碎强度, 破碎能量, Weibull分布, 数值模拟

Abstract: The coarse-grained soil is prone to particle breakage under external loads and other factors. A series of single-particle fragmentation tests is conducted for mudstone and sandstone particles. Based on the size effect and fractal model of particle fragmentation, the relationships between the fractal dimension and single-particle crushing strength, fragmentation energy, and Weibull modulus are investigated. A single particle crushing process is analyzed using PFC3D and the modelling results are compared with that from the experimental data to verify the reliability of numerical code. The crushing strength and crushing energy of large particle size are then analyzed by numerical models. The results show that the fractal dimensions of different materials are different under the same test conditions. The fragmentation degree of sandstone with different grain sizes is greater than that of mudstone. The crushing strength of a single particle has an obvious size effect. In addition, the crushing strength and energy of single particle can be predicted by fractal dimension and particle size. The modified Weibull modulus can be also predicted by fractal dimension. The numerical simulation results agree with the experimental results and also agree with the predicted results. Besides, the modelling results of the single particle crushing strength with large particle size are also consistent with the predicted results. The crushing energy, however, shows slightly different, which requires further experimental verification. The research results can provide a reference for obtaining the single particle strength and deformation characteristics of large-size coarse-grained soil.

Key words: size effect, fractal dimension, single-particle crushing strength, crushing energy, Weibull distribution, numerical simulation

中图分类号: 

  • TU411
[1] 陈猛, 崔秀文, 颜鑫, 王浩, 王二磊. 岩石−钢纤维混凝土复合层抗压强度预测模型[J]. 岩土力学, 2021, 42(3): 638-646.
[2] 石峰, 卢坤林, 尹志凯. 平移模式下刚性挡土墙三维被动滑裂面的确定与土压力计算方法研究[J]. 岩土力学, 2021, 42(3): 735-745.
[3] 孙壮壮, 马刚, 周伟, 王一涵, 陈远, 肖海斌. 颗粒形状对堆石颗粒破碎强度尺寸效应的影响[J]. 岩土力学, 2021, 42(2): 430-438.
[4] 金爱兵, 陈帅军, 赵安宇, 孙浩, 张玉帅, . 基于无人机摄影测量的露天矿边坡数值模拟[J]. 岩土力学, 2021, 42(1): 255-264.
[5] 李军, 翟文宝, 陈朝伟, 柳贡慧, 周英操, . 基于零厚度内聚力单元的水力裂缝 随机扩展方法研究[J]. 岩土力学, 2021, 42(1): 265-279.
[6] 邹先坚, 王益腾, 王川婴. 钻孔图像中岩石结构面三维形貌特征及 优势抗滑方向研究[J]. 岩土力学, 2020, 41(S1): 290-298.
[7] 吝曼卿, 张兰, 刘夕奇, 夏元友, 张电吉, 彭亚利, . 梯度应力作用下模型试件的岩爆破坏细观分析[J]. 岩土力学, 2020, 41(9): 2984-2992.
[8] 岳建勇. 地铁交通引起的建筑物振动实测与数值模拟分析[J]. 岩土力学, 2020, 41(8): 2756-2764.
[9] 邓玮婷, 丁选明, 彭宇, . 珊瑚砂地基中膨胀混凝土桩竖向受压承载性能研究[J]. 岩土力学, 2020, 41(8): 2814-2820.
[10] 高玮, 胡承杰, 贺天阳, 陈新, 周聪, 崔爽, . 基于统计强度理论的破裂岩体本构模型研究[J]. 岩土力学, 2020, 41(7): 2179-2188.
[11] 骆赵刚, 汪时机, 杨振北, . 膨胀土湿干胀缩裂隙演化及其定量分析[J]. 岩土力学, 2020, 41(7): 2313-2323.
[12] 毛浩宇, 徐奴文, 李彪, 樊义林, 吴家耀, 孟国涛, . 基于离散元模拟和微震监测的白鹤滩水电站左岸地下厂房稳定性分析[J]. 岩土力学, 2020, 41(7): 2470-2484.
[13] 史林肯, 周辉, 宋明, 卢景景, 张传庆, 路新景, . 深部复合地层TBM开挖扰动模型试验研究[J]. 岩土力学, 2020, 41(6): 1933-1943.
[14] 洪陈杰, 黄曼, 夏才初, 罗战友, 杜时贵, . 岩体结构面各向异性变异系数的尺寸效应研究[J]. 岩土力学, 2020, 41(6): 2098-2109.
[15] 张振, 张朝, 叶观宝, 王萌, 肖彦, 程义, . 劲芯水泥土桩承载路堤渐进式失稳破坏机制[J]. 岩土力学, 2020, 41(6): 2122-2131.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[2] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[3] 马 亢,徐 进,吴赛钢,张爱辉. 公路隧道局部塌方洞段的围岩稳定性评价[J]. , 2009, 30(10): 2955 -2960 .
[4] 陈 阵,陶龙光,李 涛,李海斌,王综勇. 支护结构作用的箱基沉降计算新方法[J]. , 2009, 30(10): 2978 -2984 .
[5] 楚锡华,徐远杰. 基于形状改变比能对M-C准则与 D-P系列准则匹配关系的研究[J]. , 2009, 30(10): 2985 -2990 .
[6] 王 威,王水林,汤 华,周平根. 基于三维GIS的滑坡灾害监测预警系统及应用[J]. , 2009, 30(11): 3379 -3385 .
[7] 马 青,赵均海,魏雪英. 基于统一强度理论的巷道围岩抗力系数研究[J]. , 2009, 30(11): 3393 -3398 .
[8] 刘 润,闫 玥,闫澍旺,乔春生. 某码头软黏土岸坡破坏机制分析及重建[J]. , 2009, 30(11): 3417 -3422 .
[9] 戴永浩,陈卫忠,杨春和,谭贤君,姜小兰. 金坛盐岩储气库运营模型试验研究[J]. , 2009, 30(12): 3574 -3580 .
[10] 赵明华,张 玲,曹文贵,马缤辉. 基于弹性地基梁理论的土工格室加筋体变形分析[J]. , 2009, 30(12): 3695 -3699 .