岩土力学 ›› 2021, Vol. 42 ›› Issue (1): 265-279.doi: 10.16285/j.rsm.2020.0805

• 数值分析 • 上一篇    下一篇

基于零厚度内聚力单元的水力裂缝 随机扩展方法研究

李军1, 2,翟文宝2, 3,陈朝伟3,柳贡慧2,周英操3   

  1. 1. 中国石油大学(北京)克拉玛依校区 石油学院,新疆 克拉玛依 834000;2. 中国石油大学(北京) 石油工程学院,北京 102249; 3. 中国石油集团工程技术研究院有限公司,北京 102206
  • 收稿日期:2020-05-11 修回日期:2020-09-29 出版日期:2021-01-11 发布日期:2021-01-07
  • 通讯作者: 翟文宝,男,1989年生,博士,工程师,主要从事石油工程岩石力学方面的研究。E-mail: zhaiwbdrilling@163.com E-mail: lijun446@vip.163.com
  • 作者简介:李军,男,1971年生,博士,教授,主要从事石油工程岩石力学方面的研究。
  • 基金资助:
    国家自然科学基金项目(No. 51674272,No. U1762211,No. U19B6003);国家重大科技专项子课题(No. 2017ZX05009-003)

Research on random propagation method of hydraulic fracture based on zero-thickness cohesive element

LI Jun1, 2, ZHAI Wen-bao2, 3, CHEN Zhao-wei3, LIU Gong-hui2, ZHOU Ying-cao3   

  1. 1. College of Petroleum, China University of Petroleum-Beijing at Karamay, Karamay, Xinjiang 834000, China; 2. College of Petroleum Engineering, China University of Petroleum-Beijing, Beijing 102249, China; 3. CNPC Engineering Technology R&D Company Limited, Beijing 102206, China
  • Received:2020-05-11 Revised:2020-09-29 Online:2021-01-11 Published:2021-01-07
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51674272, U1762211, U19B6003) and the Sub-project of the National Science and Technology Major Project (2017ZX05009-003).

摘要: 为有效模拟裂缝性页岩储层中水力裂缝随机扩展过程,基于单元节点的拓扑数据结构,利用网格节点分裂方式,建立了一种基于有限元网格嵌入零厚度内聚力单元的水力裂缝随机扩展新方法。利用KGD模型解析解和2种室内试验,验证了新方法的准确性和有效性。同时,通过数值算例研究了水平地应力差和储层非均质性对水力裂缝随机扩展过程的影响。研究表明:(1)该方法弥补了ABAQUS平台内置的内聚力单元无法有效模拟水力裂缝随机扩展的不足;(2)在较高水平地应力差下页岩储层非均质性越强,与水力裂缝相交的高角度天然裂缝越容易开启。所建方法能准确地描述复杂水力裂缝的随机扩展行为,可为裂缝性页岩储层的数值模拟提供新手段。

关键词: 裂缝性页岩储层, 水力裂缝随机扩展, 零厚度内聚力单元, 储层非均质性, 数值模拟

Abstract: In order to effectively simulate the process of random propagation of hydraulic fractures in fractured shale reservoirs, a new method of random propagation of hydraulic fractures based on the finite element mesh embedded with zero-thickness cohesive elements is proposed. This new method is based on the topological data structure of element nodes and the splitting mode of mesh nodes. The accuracy and effectiveness of the random propagation method are verified by comparing with the analytical solution of KGD model and two kinds of laboratory experiments. Meanwhile, the influences of horizontal in-situ stress difference and reservoir heterogeneity on the process of random propagation of hydraulic fractures are evaluated by running numerical examples. The results show that: (1) the new method makes up for the deficiency that the cohesive element built-in ABAQUS platform can not effectively simulate the random propagation of hydraulic fractures; (2) under a higher horizontal in-situ stress difference condition, the stronger the heterogeneity of a shale reservoir is, the easier it is to reopen a high-angle natural fracture intersecting with hydraulic fractures. The proposed method can accurately describe the random propagation behavior of complex hydraulic fractures, and thus provide a novel means for numerical simulation of naturally fractured shale reservoirs.

Key words: naturally fractured shale reservoir, random propagation of hydraulic fracture, zero-thickness cohesive element, reservoir heterogeneity, numerical simulation

中图分类号: 

  • TE 319
[1] 王兆耀, 刘红军, 杨奇, 赵真, 胡瑞庚, . 波流作用下大直径单桩的局部冲刷特征分析[J]. 岩土力学, 2021, 42(4): 1178-1185.
[2] 陈猛, 崔秀文, 颜鑫, 王浩, 王二磊. 岩石−钢纤维混凝土复合层抗压强度预测模型[J]. 岩土力学, 2021, 42(3): 638-646.
[3] 石峰, 卢坤林, 尹志凯. 平移模式下刚性挡土墙三维被动滑裂面的确定与土压力计算方法研究[J]. 岩土力学, 2021, 42(3): 735-745.
[4] 金爱兵, 陈帅军, 赵安宇, 孙浩, 张玉帅, . 基于无人机摄影测量的露天矿边坡数值模拟[J]. 岩土力学, 2021, 42(1): 255-264.
[5] 孟敏强, 王磊, 蒋翔, 汪成贵, 刘汉龙, 肖杨, . 基于尺寸效应的粗粒土单颗粒破碎试验及数值模拟[J]. 岩土力学, 2020, 41(9): 2953-2962.
[6] 岳建勇. 地铁交通引起的建筑物振动实测与数值模拟分析[J]. 岩土力学, 2020, 41(8): 2756-2764.
[7] 邓玮婷, 丁选明, 彭宇, . 珊瑚砂地基中膨胀混凝土桩竖向受压承载性能研究[J]. 岩土力学, 2020, 41(8): 2814-2820.
[8] 毛浩宇, 徐奴文, 李彪, 樊义林, 吴家耀, 孟国涛, . 基于离散元模拟和微震监测的白鹤滩水电站左岸地下厂房稳定性分析[J]. 岩土力学, 2020, 41(7): 2470-2484.
[9] 史林肯, 周辉, 宋明, 卢景景, 张传庆, 路新景, . 深部复合地层TBM开挖扰动模型试验研究[J]. 岩土力学, 2020, 41(6): 1933-1943.
[10] 张振, 张朝, 叶观宝, 王萌, 肖彦, 程义, . 劲芯水泥土桩承载路堤渐进式失稳破坏机制[J]. 岩土力学, 2020, 41(6): 2122-2131.
[11] 苏杰, 周正华, 李小军, 董青, 李玉萍, 陈柳. 基于偏振特性的下孔法剪切波到时判别问题探讨[J]. 岩土力学, 2020, 41(4): 1420-1428.
[12] 杨高升, 白冰, 姚晓亮, . 高含冰量冻土路基融化固结规律研究[J]. 岩土力学, 2020, 41(3): 1010-1018.
[13] 马秋峰, 秦跃平, 周天白, 杨小彬. 岩石剪切断裂面接触算法的开发与应用[J]. 岩土力学, 2020, 41(3): 1074-1085.
[14] 李康, 王威, 杨典森, 陈卫忠, 亓宪寅, 谭彩. 周期振荡法在低渗透测量中的应用研究[J]. 岩土力学, 2020, 41(3): 1086-1094.
[15] 张传庆, 吕浩安, 刘小岩, 周辉, 高阳, 闫东明, . 隧道新型恒阻让压装置的工作机制研究[J]. 岩土力学, 2020, 41(12): 4045-4053.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 吴 琼,唐辉明,王亮清,林志红. 库水位升降联合降雨作用下库岸边坡中的浸润线研究[J]. , 2009, 30(10): 3025 -3031 .
[3] 刘振平,贺怀建,李 强,朱发华. 基于Python的三维建模可视化系统的研究[J]. , 2009, 30(10): 3037 -3042 .
[4] 冷伍明,杨 奇,刘庆潭,聂如松. 软基高桥台桩-土相互作用计算新方法研究[J]. , 2009, 30(10): 3079 -3085 .
[5] 吴 亮,钟冬望,卢文波. 空气间隔装药爆炸冲击荷载作用下混凝土损伤分析[J]. , 2009, 30(10): 3109 -3114 .
[6] 张家发,定培中,张 伟,胡智京. 水布垭面板堆石坝垫层料渗透与渗透变形特性试验研究[J]. , 2009, 30(10): 3145 -3150 .
[7] 赵成刚,蔡国庆. 非饱和土广义有效应力原理[J]. , 2009, 30(11): 3232 -3236 .
[8] 徐 晗,黄 斌,饶锡保,何晓民,徐言勇. 三轴试样钻孔灌砂固结排水效果试验研究[J]. , 2009, 30(11): 3242 -3248 .
[9] 杨海清,周小平. 边坡落石运动轨迹计算新方法[J]. , 2009, 30(11): 3411 -3416 .
[10] 刘 润,闫 玥,闫澍旺,乔春生. 某码头软黏土岸坡破坏机制分析及重建[J]. , 2009, 30(11): 3417 -3422 .