岩土力学 ›› 2022, Vol. 43 ›› Issue (2): 563-572.doi: 10.16285/j.rsm.2021.0854
• 数值分析 • 上一篇
侯晓萍,樊恒辉
HOU Xiao-ping, FAN Heng-hui
摘要: 基于COMSOL Multiphysics软件对非饱和裂隙土降雨入渗特性进行数值模拟研究。通过将裂隙和基质分别离散成有限单元,建立了能充分模拟土中裂隙流、基质流以及裂隙-基质流量交换的离散裂隙-孔隙介质模型。结合“空气单元”的概念,对裂隙土的上边界进行模拟。该方法不仅能描述降雨初期雨水沿裂隙优先入渗的现象,还能描述当降雨量大于裂隙土入渗量时雨水沿地表流走的现象。通过对地表以下2 m深度内低渗含裂隙土体进行模拟,分析了裂隙的几何特征、基质的水力特性、前期水分条件以及降雨强度对非饱和裂隙土降雨入渗过程的影响。结果表明,在非饱和裂隙土中,存在两个主要的渗流过程:一是水沿裂隙优先流动;二是水不断从裂隙吸入基质中,基质吸收水的作用抑制了裂隙中优势流的发展。与裂隙的几何特征相比,基质的水力特性对非饱和裂隙土渗流的影响较大。增大基质的饱和渗透系数可能使由裂隙流主导的渗流过程转变为由基质流主导的渗流过程,而基质的非饱和特性与裂隙土的初始含水率改变了土体的储水能力,从而加速或延缓了降雨入渗至某一深度的时间。降雨强度对土体入渗速率和入渗量均有影响,当超过裂隙土的入渗能力时,多余积水沿地表流走,断面入渗率随时间趋于稳定值。
中图分类号:
[1] | 吕茂淋, 朱珍德, 周露明, 葛鑫梁, . 基于相场法的预制双裂隙岩体水力压裂扩展数值模拟研究[J]. 岩土力学, 2024, 45(6): 1850-1862. |
[2] | 马登辉, 韩迅, 蔡正银, 关云飞, . 静压桩的桩侧土压力分布规律数值分析[J]. 岩土力学, 2024, 45(6): 1863-1872. |
[3] | 陈磊, 张强, 贾朝军, 雷明锋, 黄娟, 胡晶, . 强降雨对库岸堆积体边坡稳定性影响的离心模型试验和数值模拟研究[J]. 岩土力学, 2024, 45(5): 1423-1434. |
[4] | 周慧颖, 李树忱, 王曼灵, 袁超, 张俊艇, 冯健鹏, . 气孔杏仁状玄武岩随机三维模型构建与 单轴压缩力学行为研究[J]. 岩土力学, 2024, 45(4): 1214-1232. |
[5] | 文磊, 刘 钟, 马晓华, 张振. 粉土地基中劲性复合桩抗压承载特性与荷载传递机制研究[J]. 岩土力学, 2024, 45(2): 511-524. |
[6] | 刘新荣, 王浩, 郭雪岩, 罗新飏, 周小涵, 许彬, . 考虑消落带岩体劣化影响的典型危岩岸坡稳定性研究[J]. 岩土力学, 2024, 45(2): 563-576. |
[7] | 朱寅斌, 李长冬, 周佳庆, 项林语, 姜茜慧, 朱文宇, . 考虑基质渗透性的粗糙单裂隙非达西流动特性研究[J]. 岩土力学, 2024, 45(2): 601-611. |
[8] | 华涛, 申林方, 王志良, 李泽, 徐则民. 基于近场动力学的岩石水力压裂数值模拟及裂隙网络定量分析[J]. 岩土力学, 2024, 45(2): 612-622. |
[9] | 黄生根, 张义, 霍昊, 陈常青. 软土地区深基坑支护工程格构柱变形规律研究[J]. 岩土力学, 2023, 44(S1): 533-538. |
[10] | 王凯, 付强, 徐超, 艾子博, 李丹, 王磊, 舒龙勇, . 原生煤岩组合体界面力学效应数值模拟研究[J]. 岩土力学, 2023, 44(S1): 623-633. |
[11] | 乔亚飞, 闫凯, 赵腾腾, 丁文其, . 软土地区超深圆形竖井的坑底隆起特性与机制[J]. 岩土力学, 2023, 44(9): 2707-2716. |
[12] | 张坤勇, 张梦, 孙斌, 李福东, 简永洲, . 考虑时空效应的软土狭长型深基坑地连墙变形计算方法[J]. 岩土力学, 2023, 44(8): 2389-2399. |
[13] | 尹鑫晟, 舒营, 梁禄钜, 张世民, . 考虑渗流的饱和粉土地层盾构开挖面稳定分析[J]. 岩土力学, 2023, 44(7): 2005-2016. |
[14] | 季雨坤, 王钦科, 赵国良, 张健, 马建林, . 斜坡上嵌岩抗拔桩竖向承载变形特性模型试验及数值模拟[J]. 岩土力学, 2023, 44(6): 1604-1614. |
[15] | 孙彦晓, 刘松玉, 童立元, 王峻, 崔佳, 李世龙, 李敏, . 长江漫滩区明挖隧道基坑降承压水优化分析[J]. 岩土力学, 2023, 44(6): 1800-1810. |
|