岩土力学 ›› 2022, Vol. 43 ›› Issue (S2): 541-552.doi: 10.16285/j.rsm.2021.1835

• 数值分析 • 上一篇    下一篇

波浪作用下近海滑坡机制模型试验与 数值模拟研究

单治钢1,高上2,孙淼军1,陈雨雪2,李利平2,成帅2,周宗青2   

  1. 1. 中国电建集团华东勘测设计研究院有限公司,浙江 杭州 311122;2. 山东大学 齐鲁交通学院,山东 济南 250002
  • 收稿日期:2021-11-01 修回日期:2022-01-20 出版日期:2022-10-10 发布日期:2022-10-10
  • 通讯作者: 孙淼军,男,1987年生,博士后,高级工程师,主要从事岩土工程稳定性评价、地质灾害防治等方面的科研工作。E-mail: sunmj2@hdec.com E-mail:shan_zg@hdec.com
  • 作者简介:单治钢,男,1965年生,学士,正高级工程师,主要从事海洋地质灾害识别与评价方面的研究和工程实践。
  • 基金资助:
    中国电建集团华东勘测设计研究院科技项目(No.KY2018-ZD-01-06-2019)。

Physical model tests and numerical simulations to determine mechanism of offshore submarine landslides under effect of sea waves

SHAN Zhi-gang1, GAO Shang2, SUN Miao-jun1, CHEN Yu-xue2, LI Li-ping2, CHENG Shuai2, ZHOU Zong-qing2   

  1. 1. Power China Huadong Engineering Corporation, Hangzhou, Zhejiang 311122, China; 2. School of Qilu Transportation, Shandong University, Jinan, Shandong 250002, China
  • Received:2021-11-01 Revised:2022-01-20 Online:2022-10-10 Published:2022-10-10
  • Supported by:
    This work was supported by the Science and Technology Project of PowerChina Huadong Engineering Corporation(KY2018-ZD-01-06-2019).

摘要: 以舟山群岛朱家尖滑坡为工程依托,针对波浪对近海海底边坡失稳破坏的影响问题,研发了大型水槽类近海海底滑坡物理模型试验装置,搭建了以波分复用技术为基础的光纤监测系统,开展了波浪作用下近海海底滑坡模型试验,揭示了波浪引起边坡模型内部孔隙水压力、位移变化规律以及边坡模型表面流速变化规律,分析了波浪作用下近海海底滑坡触发机制以及灾变过程。同时基于 SPH 数值模拟,针对海底滑坡灾变演化过程,开展了波浪作用下海底边坡的滑动堆积特性研究。试验结果表明:海底边坡在波浪的持续作用下,边坡底部最先发生破坏,伴随着时间的推移,边坡发生失稳破坏,海底滑坡发生时,边坡中部及以下的位置位移发生突变,边坡顶部滑移距离相对较小;波浪对海底边坡的位移和孔隙水压力同时产生影响。边坡失稳破坏时,边坡位移与孔隙水压力均出现突变现象,但孔隙水压力突变时间略早于位移突变时间。同时基于朱家尖地质剖面I的滑坡模拟,初步得到了朱家尖近海海底滑坡的滑动堆积特征,形成了一套适用于波浪作用下近海海底滑坡的试验技术与方法,对近海海底滑坡现场研究有重要的指导意义及参考价值。

关键词: 海底滑坡, 模型试验, 波浪作用, 稳定性分析

Abstract: Based on the Zhujiajian landslide in Zhoushan Islands, this paper developed a large-scale water tank-like physical model test device for investigating the influence of waves on the instability and failure of offshore submarine slopes, and built a wave division multiplexing technology-based fiber inspection system. The model test of the offshore submarine landslide under the action of waves was carried out, the variation law of pore water pressure and displacement in the slope model caused by waves was revealed, and the variation law of the surface velocity of the slope model was analyzed. Based on the SPH numerical simulation, the research on the sliding accumulation characteristics of the submarine slope under the action of waves was carried out to understand the catastrophic evolution process of the submarine landslide. Results showed that under the continuous action of waves, the bottom of the submarine slope was the first to be damaged, and then the slope became unstable and was damaged with the time elapsed. When a submarine landslide occurred, the displacement in the middle location of the slope and below changed abruptly, while the slip distance at the top of the slope was relatively small; waves affected the displacement and pore water pressure of the submarine slope simultaneously. When the slope was destabilized and damaged, the slope displacement and the pore water pressure changed suddenly, but the time of the sudden change of pore water pressure was slightly earlier than that of the displacement. Meanwhile, based on the landslide simulation of Zhujiajian geological profile I, the sliding accumulation characteristics of Zhujiajian offshore submarine landslides were preliminarily obtained. A set of test techniques and methods suitable for offshore submarine landslides under the action of waves has been established, which provides important guiding significance and reference values for the field research of offshore submarine landslides.

Key words: submarine landslide, model test, wave action, stability analysis

中图分类号: 

  • P730
[1] 刘斯宏, 沈超敏, 程德虎, 张呈斌, 毛航宇, . 土工袋加固膨胀土边坡降雨−日晒循环试验研究[J]. 岩土力学, 2022, 43(S2): 35-42.
[2] 汤炀, 刘干斌, 郑明飞, 史世雍, . 饱和粉土中相变能源桩热力响应模型试验研究[J]. 岩土力学, 2022, 43(S2): 282-290.
[3] 钟卫, 张 帅, 贺拿. 基于相对变形方法的桩后土拱模型试验研究[J]. 岩土力学, 2022, 43(S2): 315-326.
[4] 罗维平, 袁大军, 金大龙, 陆平, 陈健, 郭海鹏, . 富水砂层盾构开挖面支护压力与地层变形关系 离心模型试验研究[J]. 岩土力学, 2022, 43(S2): 345-354.
[5] 张文莲, 孙晓云, 陈勇, 金申熠, . 基于岩体抗压强度折减的边坡稳定性分析方法[J]. 岩土力学, 2022, 43(S2): 607-615.
[6] 刘博, 徐飞, 赵维刚, 高阳, . 隧道工程结构模型试验系统研究综述与展望[J]. 岩土力学, 2022, 43(S1): 452-468.
[7] 王心博, 王路君, 朱斌, 王鹏, 袁思敏, 陈云敏, . 水合物储层伺服降压开采模型试验研究[J]. 岩土力学, 2022, 43(9): 2360-2370.
[8] 邓波, 杨明辉, 王东星, 樊军伟, . 刚性挡墙后非饱和土破坏模式及主动土压力计算[J]. 岩土力学, 2022, 43(9): 2371-2382.
[9] 韦超, 朱鸿鹄, 高宇新, 王静, 张巍, 施斌, . 地面塌陷分布式光纤感测模型试验研究[J]. 岩土力学, 2022, 43(9): 2443-2456.
[10] 闫国强, 殷跃平, 黄波林, 胡雷, . 三峡库区顺层灰岩岸坡劣化−溃屈灾变机制研究[J]. 岩土力学, 2022, 43(9): 2568-2580.
[11] 兰景岩, 蔡金豆, 吴连斌, 史庆旗, . 含隧道场地地震动放大效应的深度变化规律研究[J]. 岩土力学, 2022, 43(8): 2083-2091.
[12] 柴源, 牛勇, 吕海波, . 水泥胶结钙质砂地层中单桩竖向承载特性试验研究[J]. 岩土力学, 2022, 43(8): 2203-2212.
[13] 樊浩博, 周定坤, 刘勇, 宋玉香, 朱正国, 朱永全, 高新强, 郭佳奇, . 富水管道型岩溶隧道衬砌结构力学响应特征研究[J]. 岩土力学, 2022, 43(7): 1884-1898.
[14] 张雨坤, 秦廷辉, 李大勇, 王冲冲, . 分层土中裙式吸力基础吸力沉贯特性模型试验研究[J]. 岩土力学, 2022, 43(5): 1317-1325.
[15] 雷华阳, 王磊, 刘景锦, 王鹏, 章纬地, 薄钰, . 化学改性联合真空预压法加固吹填土试验分析[J]. 岩土力学, 2022, 43(4): 891-900.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .