岩土力学 ›› 2023, Vol. 44 ›› Issue (11): 3307-3317.doi: 10.16285/j.rsm.2023.1070

• 数值分析 • 上一篇    下一篇

三轴剪切条件下胶结型深海能源土应变局部化离散元模拟分析

王思远1,蒋明镜1, 2, 3, 4,李承超2,张旭东1   

  1. 1. 天津大学 土木工程学院土木工程系,天津 300072;2. 苏州科技大学 土木工程学院,江苏 苏州 215009; 3. 同济大学 土木工程减灾国家重点实验室,上海 200092;4. 同济大学 土木工程学院岩土工程系,上海 200092
  • 收稿日期:2023-06-06 接受日期:2023-09-20 出版日期:2023-11-28 发布日期:2023-11-29
  • 通讯作者: 蒋明镜,男,1965年生,博士,教授,博士生导师,主要从事天然结构性黏土、砂土、非饱和土、太空土和深海能源土宏观微观试验、本构模型和数值分析研究。E-mail: mingjing.jiang@usts.edu.cn E-mail:wsiy@tju.edu.cn
  • 作者简介:王思远,男,1995年生,博士研究生,主要从事深海能源土宏观微观试验和数值分析研究方面的研究。
  • 基金资助:
    国家重大自然灾害防控与公共安全重点专项(No.2022YFC3003403);国家自然科学基金创新研究群体项目(No.42221002);国家自然科学基金重大项目(No.51890911);江苏省高等学校基础科学(自然科学)研究面上项目(No.22KJB570004);海南省重点研发计划项目(No.ZDYF2021SHFZ264).

Strain localization formation of deep-sea methane hydrate-bearing soils by discrete element simulation of the triaxial test

WANG Si-yuan1, JIANG Ming-jing1, 2, 3, 4, LI Cheng-chao2, ZHANG Xu-dong1   

  1. 1. Department of Civil Engineering, School of Civil Engineering, Tianjin University, Tianjin 300350, China; 2. School of Civil Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China; 3. State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China; 4. Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai 200092, China
  • Received:2023-06-06 Accepted:2023-09-20 Online:2023-11-28 Published:2023-11-29
  • Supported by:
    This work was supported by the National Key Project for Prevention and Control of Major Natural Disasters and Public Security of China (2022YFC3003403), the National Natural Science Foundation of China Innovation Research Group Project (42221002), the Major Project of National Natural Science Foundation of China (51890911), the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (22KJB570004) and Hainan Provincial Foundation for Key Research and Development Project(ZDYF2021SHFZ264).

摘要: 天然气水合物(后简称为“水合物”)开采期间会导致其储层的变形和破坏,继而引发一系列的工程问题。为实现水合物安全有效的开采,需要对其赋存条件下的水合物沉积物(后称为“能源土”)的剪切变形特性进行相应研究。采用温-压-力-化胶结接触模型用以考虑水合物的胶结效应和对赋存环境温度压力的敏感性。此外,柔性边界被应用于离散元模拟的三轴剪切试验,用以保证剪切带的充分演化。通过考虑局部变形、孔隙率、平均纯转动率、胶结破坏及组构各项异性等变量研究了剪切带的形成规律及其宏微观机制。结果表明:①在三轴剪切试验中所采用的柔性边界在有效模拟深海能源土的应力-应变及体变响应的同时保证了试样的自由变形。②剪切带在剪切初期应变硬化阶段已经开始萌发,并在应变软化阶段愈发明显。③剪切带内外宏微观参量例如颗粒转动、局部孔隙率变化等均表现出明显差异。④水合物胶结的存在对于其宿主砂土具有双重作用,一方面增强了其强度特性,另一方面作为剪切过程中的薄弱环节率先发生破坏促使剪切带的萌发。研究结果对于理解深海能源土变形中的细观演化机制具有参考价值。

关键词: 能源土, 离散元法, 应变局部化, 宏细观机制

Abstract: Exploiting methane hydrate induces deformation and damage to the reservoir, leading to a series of geotechnical engineering problems. Therefore, to achieve safe and effective extraction of hydrates, it is necessary to research the shear deformation characteristics of methane hydrate-bearing sediments(MHBS). The thermo-hydro-mechanical-chemical (THMC) microscopic contact model was utilized to account for hydrate cementation effects and their sensitivity to environmental temperature and pressure. In addition, the flexible boundary was applied to triaxial numerical tests to ensure the full evolution of shear bands. The microscopic mechanism of onset and development of shear bands was studied by considering macro and micro variables such as strain localization, porosity, average pure rotation rate (APR), bond failure, and spatial distribution of shear band. The results indicate that the flexible boundary used in the triaxial shear test effectively represents the stress-strain and volumetric response of MHBS while ensuring the free deformation of the sample. The shear band has already begun to germinate and to develop during the initial strain hardening stage and becomes more pronounced once it reaches the strain softening stage. Considerable disparities exist in macro- and microscopic parameters, including particle rotation and porosity alterations, both within and outside the shear band. Furthermore, hydrate cementation exerts a dual impact on its host sand. On the one hand, it enhances its strength characteristics, and on the other hand, as a weak link in the shear process, it takes the lead in failure, thus contributing to the emergence of shear bands. The research results have reference value for understanding the mesoscale evolution mechanism of MHBS deformation.

Key words: methane hydrate-bearing sediments, discrete element method, strain localization, macro- and meso- mechanism

中图分类号: 

  • TU 441
[1] 骆祚森, 朱作祥, 苏卿, 李建林, 邓华锋, 杨超, . 基于平行黏结模型的水-岩作用下砂岩蠕变模拟及损伤机制研究[J]. 岩土力学, 2023, 44(8): 2445-2457.
[2] 杜炜, 聂如松, 李列列, 谭永长, 张杰, 祁延录, . 考虑不同边界条件的风积沙−土工格栅拉拔试验离散元模拟研究[J]. 岩土力学, 2023, 44(6): 1849-1862.
[3] 杨阳, 田英辉, 张春会, 王荣, 王智超, 王乐, . 砂土海床中海底管道贯入阻力演化特征及细观机制研究[J]. 岩土力学, 2023, 44(4): 1001-1008.
[4] 赵顺利, 杨之俊, 傅旭东, 方正, . 考虑应变局部化的粗粒料剪切损伤力学机制[J]. 岩土力学, 2023, 44(1): 31-42.
[5] 王冬勇, 陈曦, 王方宇, 彭丽云, 齐吉琳, . 基于罚函数偶应力理论的土体应变局部化研究[J]. 岩土力学, 2022, 43(S2): 533-540.
[6] 申浩翰, 张海, 范俊锴, 徐瑞阳, 张小明. 离散单元法软件EDEM中接触半径对岩石 力学特性的影响及其应用[J]. 岩土力学, 2022, 43(S1): 580-590.
[7] 杨磊, 涂冬媚, 朱启银, 吴则祥, 余闯, . 考虑变温幅值影响的颗粒循环热 固结离散元法试验研究[J]. 岩土力学, 2022, 43(S1): 591-600.
[8] 刘彪, 王桥, 张宗亮, 周伟, FENG Y T, 彭张振, 李蕴升, 徐俊, 郭凯, . 基于B-DEM的颗粒聚合体应力计算和破碎路径模拟[J]. 岩土力学, 2022, 43(12): 3493-3502.
[9] 胡伟, 朱海涛, 蒋明镜, 李文昊, . 考虑能源土渗透性影响的水合物分解 超孔压特性研究[J]. 岩土力学, 2021, 42(10): 2755-2762.
[10] 王刚, 韦林邑, 魏星, 张建民, . 压实黏土三轴压缩变形过程中的渗透性变化规律[J]. 岩土力学, 2020, 41(1): 32-38.
[11] 邓华锋, 支永艳, 段玲玲, 潘 登, 李建林. 水−岩作用下砂岩力学特性及微细观结构损伤演化[J]. 岩土力学, 2019, 40(9): 3447-3456.
[12] 王蕴嘉, 宋二祥. 堆石料颗粒形状对堆积密度及强度影响的 离散元分析[J]. 岩土力学, 2019, 40(6): 2416-2426.
[13] 王 杰, 贡京伟, 赵泽印. 单轴压类岩石试件应变局部化位置、方向及 预警应用研究[J]. 岩土力学, 2018, 39(S2): 186-194.
[14] 申海萌, 李 琦, 李霞颖, 马建力, . 川南龙马溪组页岩不同应力条件下脆性破坏特征室内实验与数值模拟研究[J]. 岩土力学, 2018, 39(S2): 254-262.
[15] 胡唯哲,谢凌志,岑望来,殷 实,罗云川,赵 鹏,. 基于细观试验和离散元法的盐岩力学特性[J]. , 2018, 39(6): 2073-2081.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 谭贤君,陈卫忠,杨建平,杨春和. 盐岩储气库温度-渗流-应力-损伤耦合模型研究[J]. , 2009, 30(12): 3633 -3641 .
[2] 魏 星,王 刚,余志灵. 交通荷载下软土地基长期沉降的有限元法[J]. , 2010, 31(6): 2011 -2015 .
[3] 温世亿,李静,苏霞,姚雄. 复杂应力条件下围岩破坏的细观特征研究[J]. , 2010, 31(8): 2399 -2406 .
[4] 刘 杰,李建林,屈建军,陈 星,李剑武,骆世威. 基于卸荷岩体力学的大岗山坝肩边坡水平位移发育的多因素影响分析[J]. , 2010, 31(11): 3619 -3626 .
[5] 蒋臻蔚,彭建兵,王启耀. 西安市地铁3号线不良地质问题及对策研究[J]. , 2010, 31(S2): 317 -321 .
[6] 刘用海,朱向荣,常林越. 基于Casagrande法数学分析确定先期固结压力[J]. , 2009, 30(1): 211 -214 .
[7] 李兴高,刘维宁. 挡土结构上水-土压力分算的进一步探讨[J]. , 2009, 30(2): 419 -424 .
[8] 祝 磊,洪宝宁. 粉状煤系土的物理力学特性[J]. , 2009, 30(5): 1317 -1322 .
[9] 周春梅,章泽军,徐大杰,王生维,李先福. 古构造应力场数值模拟及危险性预测研究[J]. , 2009, 30(7): 2141 -2146 .
[10] 孙长帅,杨海巍,徐光黎. 岩石锚杆基础抗拔承载力计算方法探究[J]. , 2009, 30(S1): 75 -78 .