岩土力学 ›› 2023, Vol. 44 ›› Issue (6): 1849-1862.doi: 10.16285/j.rsm.2022.1023

• 数值分析 • 上一篇    

考虑不同边界条件的风积沙−土工格栅拉拔试验离散元模拟研究

杜炜1,聂如松1, 2,李列列3,谭永长1,张杰1,祁延录4   

  1. 1. 中南大学 土木工程学院,湖南 长沙 410075;2. 中南大学 重载铁路工程结构教育部重点实验室,湖南 长沙 410075; 3. 华北水利水电大学 水利水电学院,河南 郑州 450045;4. 新疆铁道勘察设计院有限公司,新疆 乌鲁木齐 830011
  • 收稿日期:2022-07-04 接受日期:2022-09-13 出版日期:2023-06-14 发布日期:2023-06-17
  • 通讯作者: 李列列,男,1983年生,博士,讲师,主要从事岩石混凝土材料与结构方面的研究。E-mail: 13370912@qq.com E-mail:214812326@csu.edu.cn
  • 作者简介:杜炜,男,1999年生,硕士研究生,主要从事加筋土结构力学特性及离散元数值模拟方面的研究。
  • 基金资助:
    中国铁路乌鲁木齐局集团有限公司科技研究开发计划课题(No.WLMQ-KGHZGS-HRTL-GGB-2020-0032);国家自然科学基金(No.51878666);高速铁路建造技术国家工程实验室开放基金项目(No.HSR201905)。

Discrete element simulation on aeolian sand-geogrid pull-out test with different boundary conditions

DU Wei1, NIE Ru-song1, 2, LI Lie-lie3, TAN Yong-chang1, ZHANG Jie1, QI Yan-lu4   

  1. 1. School of Civil Engineering, Central South University, Changsha, Hunan 410075, China; 2. MOE Key Laboratory of Engineering Structures of Heavy Haul Railway, Central South University, Changsha, Hunan 410075, China; 3. College of Water Resources and Hydropower, North China University of Water Resources and Electric Power, Zhengzhou, Henan 450045, China; 4. Xinjiang Railway Survey and Design Institute Co., Ltd., Urumqi, Xinjiang 830011, China
  • Received:2022-07-04 Accepted:2022-09-13 Online:2023-06-14 Published:2023-06-17
  • Supported by:
    This work was supported by the Scientific and Technological Research and Development Program of China Railway Urumqi Bureau Group Co., Ltd. (WLMQ-KGHZGS-HRTL-GGB-2020-0032), the National Natural Science Foundation of China (51878666) and the National Engineering Laboratory of High-speed Railway Construction Technology Open Fund Project (HSR201905).

摘要: 室内土工格栅拉拔试验物理模型边界及加载装置通常是刚性的,但土工格栅工程应用的边界条件往往不能与室内拉拔试验物理模型边界相对应。为了研究边界条件对拉拔试验结果的影响,在室内三轴和拉拔试验的基础上,运用三维离散元方法,对土工格栅加筋风积沙的拉拔试验展开数值模拟,研究加载顶面刚、柔性加载方式和模型前壁刚、柔性边界4种组合条件即刚性顶面刚性前壁(RTRP)、柔性顶面刚性前壁(FTRP)、刚性顶面柔性前壁(RTFP)、柔性顶面柔性前壁(FTFP)对筋土界面宏细观特性的影响。分析了不同组合条件下拉拔力与拉拔位移的关系、界面剪切强度、试样内部应力链、孔隙率分布和颗粒旋转规律,分析了刚性加载板和柔性边界颗粒位移、FTFP组合下土工格栅的变形以及拉拔过程中剪切带的演化规律。研究表明,模型前壁的刚、柔性边界对拉拔力和拉拔位移曲线模式以及界面摩擦角的影响很大。刚性前壁边界条件下,拉拔力和拉拔位移曲线呈加工软化型;柔性前壁边界条件下,拉拔力和拉拔位移曲线近似呈双折线型。当模型前壁由刚性变为柔性时,界面摩擦角减小了7º~8º。当法向应力小于90 kPa时,建议FTRP组合、RTFP组合和FTFP组合的拉拔力峰值折减系数分别取0.9、0.6和0.7。4种组合在拉拔试验过程中试样体积增加,呈剪胀特性。RTRP和FTRP组合剪切带厚度分布为颗粒平均粒径的5.38倍和10.79倍;RTFP与FTFP组合剪切带的分布范围更广。该研究成果有助于深入揭示刚、柔加载方式以及刚、柔前壁边界下土工合成材料和风积沙的相互作用机制

关键词: 拉拔试验, 边界条件, 离散元法, 风积沙

Abstract:

The boundary and loading device of the physical model of laboratory geogrid pull-out tests are usually rigid, but the boundary conditions of the geogrid in engineering application cannot always correspond to the physical model boundary of laboratory pull-out test. In order to study the effect of boundary conditions on the pull-out test results, this paper uses three-dimensional discrete element method to carry out numerical simulation on the pull-out tests of geogrid-reinforced aeolian sand based on the laboratory triaxial and pull-out tests. The effects of four combination conditions, namely rigid top surface and rigid front wall (RTRP), flexible top surface and rigid front wall (FTRP), rigid top surface and flexible front wall (RTFP), and flexible top surface and flexible front wall (FTFP), on the macroscopic and mesoscopic characteristics of reinforced soil interface are studied. The relationship between pull-out force and pull-out displacement, interface shear strength, force chain, porosity distribution and particle rotation law were analyzed under different combination conditions. The displacement of rigid loading plate and flexible boundary particles, the deformation of geogrids under FTFP combination, and the evolution law of shear band during pull-out were examined. The results show that the rigid and flexible boundary of the front wall of the model has a great influence on the pull-out force curve pattern and interface friction angle. Under rigid front wall boundary conditions, the pull-out force and displacement curves are machining softening, while the pull force and displacement curves are approximately double-folded under the boundary condition of flexible front wall. When the front wall of the model changes from rigid to flexible, the friction angle of the interface decreases by 7º− 8º. When the normal pressure is less than 90 kPa, it is suggested that the peak reduction coefficients of the FTRP combination, RTFP combination and FTFP combination should be 0.9, 0.6 and 0.7, respectively. In the process of pull-out test, the specimen volumes under the four combinations expand and show dilatancy. The shear band thickness distributions of RTRP and FTRP are 5.38 and 10.79 times of the medium particle diameter. The shear bands of RTFP and FTFP have a wider distribution range. The research results are helpful to further reveal the interaction mechanism between geogrid and aeolian sand under rigid and flexible loading modes as well as rigid and flexible front wall boundary.

Key words: pull-out test, boundary conditions, discrete element method, aeolian sand

中图分类号: 

  • TU411
[1] 田升奎, 刘观仕, 赵青松, 徐国方, 蔡铭炫, . 基于图像RGB信息测试湿度场技术的风积沙毛细水上升试验研究[J]. 岩土力学, 2023, 44(9): 2525-2536.
[2] 骆祚森, 朱作祥, 苏卿, 李建林, 邓华锋, 杨超, . 基于平行黏结模型的水-岩作用下砂岩蠕变模拟及损伤机制研究[J]. 岩土力学, 2023, 44(8): 2445-2457.
[3] 杨阳, 田英辉, 张春会, 王荣, 王智超, 王乐, . 砂土海床中海底管道贯入阻力演化特征及细观机制研究[J]. 岩土力学, 2023, 44(4): 1001-1008.
[4] 黄炜, 简文彬, 杨坚, 豆红强, 罗金妹, . 多支盘锚杆的原型试验与荷载传递特征分析[J]. 岩土力学, 2023, 44(2): 520-530.
[5] 申浩翰, 张海, 范俊锴, 徐瑞阳, 张小明. 离散单元法软件EDEM中接触半径对岩石 力学特性的影响及其应用[J]. 岩土力学, 2022, 43(S1): 580-590.
[6] 杨磊, 涂冬媚, 朱启银, 吴则祥, 余闯, . 考虑变温幅值影响的颗粒循环热 固结离散元法试验研究[J]. 岩土力学, 2022, 43(S1): 591-600.
[7] 郑紫荆, 朱云海, 王巧, 谢海建, 陈赟, . 有机污染物在含土工膜复合隔离墙 和含水层系统的运移半解析模型[J]. 岩土力学, 2022, 43(2): 453-465.
[8] 王家全, 祁航翔, 林志南, 唐毅, . 基于数字图像分析的土工合成材料加筋砂土拉拔试验研究[J]. 岩土力学, 2022, 43(12): 3259-3269.
[9] 刘彪, 王桥, 张宗亮, 周伟, FENG Y T, 彭张振, 李蕴升, 徐俊, 郭凯, . 基于B-DEM的颗粒聚合体应力计算和破碎路径模拟[J]. 岩土力学, 2022, 43(12): 3493-3502.
[10] 肖飞, 孔令伟, 刘观仕, 冯衡, 董义义, 曾二贤, . 中密风积沙地层金属装配式基础抗拔模型试 验与承载力改进计算方法[J]. 岩土力学, 2022, 43(1): 65-75.
[11] 冯忠居, 江冠, 赵瑞欣, 龙厚胜, 王政斌, 张正旭, . 基于多因素耦合效应的锚索预应力长期损失研究[J]. 岩土力学, 2021, 42(8): 2215-2224.
[12] 凌道盛, 赵天浩, 钮家军, 朱松, 单振东, . 混合非齐次边界下非饱和土一维固结解析解[J]. 岩土力学, 2021, 42(4): 883-891.
[13] 陈成, 段永达, 芮瑞, 汪伦. 基于拉拔试验和离散元模拟的单、双层土工 格栅加固道砟的研究[J]. 岩土力学, 2021, 42(4): 954-962.
[14] 杨坚, 简文彬, 黄炜, 黄聪惠, 罗金妹, 李先忠, . 注浆支盘式锚杆拉拔试验及极限承载力计算[J]. 岩土力学, 2021, 42(4): 1126-1132.
[15] 冯衡, 高斐略, 刘观仕, 高彬, 肖飞, 曾二贤, . 风积沙地基金属装配式基础的真型试验研究[J]. 岩土力学, 2021, 42(12): 3328-3334.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .