岩土力学 ›› 2022, Vol. 43 ›› Issue (2): 453-465.doi: 10.16285/j.rsm.2021.1301

• 基础理论与实验研究 • 上一篇    下一篇

有机污染物在含土工膜复合隔离墙 和含水层系统的运移半解析模型

郑紫荆1, 2,朱云海3,王巧1, 2,谢海建1, 2,陈赟2, 4   

  1. 1. 浙江大学 建筑工程学院,浙江 杭州 310058;2. 浙江大学 平衡建筑研究中心,浙江 杭州 310028; 3. 中国电建集团华东勘测设计研究院有限公司,浙江 杭州 310014;4. 浙江大学 建筑设计研究院有限公司,浙江 杭州 310028
  • 收稿日期:2021-08-11 修回日期:2021-10-21 出版日期:2022-02-11 发布日期:2022-02-22
  • 通讯作者: 谢海建,男,1981年生,博士,教授,主要从事环境土工和水文地质方面的研究。E-mail: xiehaijian@zju.edu.cn E-mail:21912093@zju.edu.cn
  • 作者简介:郑紫荆,女,1997年生,硕士研究生,主要从事环境土工研究。
  • 基金资助:
    浙江省“尖兵”“领雁”研发攻关计划(No. 2022C03051);国家重点研发计划项目(No. 2019YFC1806005, No. 2018YFC1802303);国家自然科学基金(No. 41931289, No. 41977223);浙江省杰出青年科学基金(No. LR20E080002)。

A semi-analytical model for analyzing the transport of organic pollutants through the geomembrane composite cut-off wall and aquifer system

ZHENG Zi-jing1, 2, ZHU Yun-hai3, WANG Qiao1, 2, XIE Hai-jian1, 2, CHEN Yun2, 4   

  1. 1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, Zhejiang 310058, China; 2. Center for Balance Architecture, Zhejiang University, Hangzhou, Zhejiang 310028, China; 3. Huadong Engineering Corporation limited, Hangzhou, Zhejiang 310014, China; 4. The Architectural Design & Research Institute of Zhejiang University Co, Ltd, Hangzhou, Zhejiang 310028, China
  • Received:2021-08-11 Revised:2021-10-21 Online:2022-02-11 Published:2022-02-22
  • Supported by:
    This work was supported by the Research and Development Program for “Pioneer” and “Leading Goose” of Zhejiang Province (2022C03051), the National Research and Development Program of China (2019YFC1806005, 2018YFC1802303), the National Natural Science Foundation of China (41931289, 41977223) and the Natural Science Foundation of Zhejiang Province for Distinguished Young Scholars (LR20E080002).

摘要: 为评估土工膜与土-膨润土组成的复合隔离墙对有机污染物的防污性能,建立了污染物在源区域发生降解扩散时透过复合隔离墙的一维瞬态扩散模型。通过拉普拉斯变换和Talbot数值反演获得了模型解。第3类入流边界条件下,考虑源区的扩散和降解时,第1类隔离墙(土工膜/土-膨润土)和第2类隔离墙(土-膨润土/土工膜/土-膨润土)100 a的击穿浓度分别较源浓度恒定时减少了59%和53%。由于假设土工膜渗透系数高于10–12 m/s,污染物在复合隔离墙中的对流作用不能忽略,因此,采用第2类复合隔离墙使土-膨润土能更好地发挥主导隔离作用。将土工膜的渗透系数从10–10 m/s减少到10–16 m/s,第1类复合隔离墙的击穿时间从26 a增加到188 a,第2类复合隔离墙的击穿时间从32 a增加到81 a。利用抽水井调整墙体内外为负水头差及提高源区的污染物降解能力,可使隔离墙的防污性能得到较大提升。

关键词: 可降解有机污染物, 入流边界条件, 土工膜, 复合隔离墙, 数值反演, 解析模型, 击穿时间

Abstract: In order to evaluate the antifouling performance of the composite cut-off wall composed of geomembrane and soil- bentonite to the organic pollutants, a one-dimensional transient diffusion model was established to describe the diffusion behavior of pollutants through the composite cut-off wall when the pollutants were degraded in the source region. The solution of the analytical model was calculated by the Laplace transform and the Talbot numerical inversion. When the effects of pollutant diffusion and degradation were considered under the 3rd type inlet boundary condition, the 100-year breakthrough concentration of the type I (geomembrane/soil-bentonite) and type II (soil-bentonite/geomembrane/soil-bentonite) composite cut-off walls decreased by 59% and 53% than that under the 1st type inlet boundary condition, respectively. Since the permeability coefficient of geomembrane was assumed to be higher than 10–12 m/s, the convection of pollutants in the composite cut-off wall cannot be ignored. Thus, the type II composite cut-off wall enabled the soil-bentonite to play a dominant role in isolating the organic pollutants better. By reducing the permeability coefficient of geomembrane from 10–10 m/s to 10–16 m/s, the breakthrough time of type I composite cut-off wall was increased from 26 years to 188 years, and that of type II composite cut-off wall was increased from 32 years to 81 years, correspondingly. The antifouling performance of the composite cut-off wall can be effectively increased by adopting the methods, such as adjusting the negative head loss inside and outside the wall by a pumping well, and increasing the degradation capacity of pollutants in the source region.

Key words: degradable organic pollutant, inlet boundary condition, geomembrane, composite cut-off wall, numerical inversion;

中图分类号: 

  • X 53
[1] 侯娟, 邢行, 徐东, 陆向前, . 土工膜-土工布界面动力剪切特性试验研究[J]. 岩土力学, 2022, 43(2): 365-376.
[2] 周中, 张俊杰, 张称呈, 龚琛杰. 泥水盾构泥浆渗透-扩散时空演化解析模型[J]. 岩土力学, 2021, 42(8): 2185-2194.
[3] 梁冰, 张柴, 刘磊, 陈锋, . 垃圾土现场渗透性测定与土水特性反演[J]. 岩土力学, 2021, 42(6): 1493-1500.
[4] 裴书锋, 赵金帅, 于怀昌, 刘国锋, 夏跃林, 张頔, 徐进鹏, . 考虑洞室岩体应力型破坏特征的局部地应力反演方法及应用[J]. 岩土力学, 2020, 41(12): 4093-4104.
[5] 姚仰平, 黄建, 张奎, 崔光祖. 机场高填方蠕变沉降的数值反演预测[J]. 岩土力学, 2020, 41(10): 3395-3404.
[6] 史 吏, 王慧萍, 孙宏磊, 潘晓东, . 群桩基础引发饱和地基振动的近似解析解[J]. 岩土力学, 2019, 40(5): 1750-1760.
[7] 高俊丽, 徐宏飞, 曹威, 袁川. 加肋土工膜与砂土拉拔试验及界面细观分析[J]. 岩土力学, 2019, 40(12): 4668-4674.
[8] 伍海清,白 冰,李小春,刘明泽,何媛媛, . CO2地质封存中储层流体压力演化规律的解析模型[J]. , 2018, 39(6): 2099-2105.
[9] 李 波,肖先波,徐唐锦,周 嵩,. 泥皮存在时防渗墙与复合土工膜联接型式模型试验[J]. , 2018, 39(5): 1761-1766.
[10] 李培超,徐振华. 有限二维饱和多孔介质因载荷诱发 Biot固结的解析解[J]. , 2016, 37(9): 2599-2602.
[11] 刘 军,李 波. 围堰防渗墙与复合土工膜联接型式试验研究[J]. , 2015, 36(S1): 531-536.
[12] 朱才辉,李 宁. 基于黄土变形时效试验的高填方工后沉降研究[J]. , 2015, 36(10): 3023-3031.
[13] 鲁建荣. 基于厚壁筒三维解析模型的深部洞室围岩分区破裂化机制研究[J]. , 2014, 35(9): 2673-2684.
[14] 蔡武军 ,凌道盛 ,徐泽龙 ,陈云敏 , . 单一裂隙优势渗流对黏土层防渗性能的影响分析[J]. , 2014, 35(10): 2838-2844.
[15] 袁俊平 ,曹雪山 ,和桂玲 ,王 豹 ,刘英豪 ,殷宗泽 , . 平原水库防渗膜下气胀现象产生机制现场试验研究[J]. , 2014, 35(1): 67-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .