岩土力学 ›› 2022, Vol. 43 ›› Issue (2): 466-478.doi: 10.16285/j.rsm.2021.1072

• 基础理论与实验研究 • 上一篇    下一篇

吸力式沉箱底部土体循环特性 及其等效循环蠕变模型研究

朱文波1, 2,戴国亮1, 2,王博臣1, 2,龚维明1, 2,孙捷3,胡皓3   

  1. 1. 东南大学 混凝土及预应力混凝土结构教育重点实验室,江苏 南京 211189; 2. 东南大学 土木工程学院,江苏 南京 211189;3. 华能国际电力江苏能源开发有限公司清洁能源分公司,江苏 南京 210003
  • 收稿日期:2021-07-15 修回日期:2021-11-12 出版日期:2022-02-11 发布日期:2022-02-22
  • 通讯作者: 戴国亮,男,1975年生,博士,教授,博士生导师,长期从事地下结构工程方面的教学与研究工作。E-mail: daigl@seu.edu.cn E-mail:230169390@seu.edu.cn
  • 作者简介:朱文波,男,1990年生,博士,博士后,长期从事海洋岩土以及地下结构方面的研究工作
  • 基金资助:
    国家自然科学基金(No. 52078128,No. 51878160,No. 51678145);中国华能集团有限公司科技项目(No. HNKJ19-H17)

Study on cyclic characteristics and equivalent cyclic creep model of the soft clay at the bottom of suction caisson foundation

ZHU Wen-bo1, 2, DAI Guo-liang1, 2, WANG Bo-chen1, 2, GONG Wei-ming1, 2, SUN Jie3, HU Hao3   

  1. 1. Key Laboratory of Concrete and Prestressed Concrete Structure of Ministry of Education, Southeast University, Nanjing, Jiangsu 211189, China; 2. School of Civil Engineering, Southeast University, Nanjing, Jiangsu 211189, China; 3. Huaneng International Power Jiangsu Energy Development Co., Ltd. Clean Energy Branch, Nanjing, Jiangsu 210003, China
  • Received:2021-07-15 Revised:2021-11-12 Online:2022-02-11 Published:2022-02-22
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (52078128, 51878160, 51678145) and the Science and Technology Project of China Huaneng Group Co., Ltd (HNKJ19-H17).

摘要: 吸力式沉箱基础作为张力腿平台(TLP)的锚固基础,其底部土体不仅存在轴向卸荷作用,而且还存在循环荷载作用。现有研究很少涉及在卸荷条件下进行的软黏土循环累积变形研究。因此,通过循环三轴试验研究了轴向卸荷条件下软黏土的应变累积变形及应变软化特性。试验结果表明:在低静偏应力以及动偏应力条件下,土体应变累积及软化程度较低;随着动偏应力增加,循环累积变形逐渐变大且前期发展较快后期趋于稳定,同时应变软化程度逐渐增大;土体循环累积变形随动偏应力提高而增大,其循环累积应变曲线呈衰减-稳定的蠕变特性。在试验基础上,提出与静偏应力和动偏应力有关的软化系数公式。构建了考虑软化系数与静偏应力、动偏应力等条件下软黏土等效循环蠕变模型。将该模型推广至三维,并开发了有限元子程序。建立了循环荷载作用下吸力式沉箱基础循环抗拔承载力有限元分析法,将其用于吸力式沉箱基础循环累积变形分析中,并与沉箱模型循环试验结果进行了对比验证。

关键词: 吸力式沉箱基础, 软黏土, 应变软化, 累积变形, 等效循环蠕变模型, 有限元

Abstract: As the anchoring foundation of the tension leg platform (TLP), suction caisson foundation is not only subjected to the vertical pullout load but also subjected to the cyclic load. However, there are few studies on the mechanism of the cyclic characteristics of soft clay under unloading condition. In this study, the cyclic triaxial tests under axial unloading were carried out to obtain the cyclic cumulative deformation and strain softening characteristics of soft clay. The results show that the degree of strain accumulation and softening coefficient were low under the condition of low static deviator stress and dynamic deviator stress. With the increase of dynamic deviator stress, the cumulative cyclic deformation gradually increased and rapidly developed in the early stage and tended to be stable in the late stage. Meanwhile, the softening of soil gradually increased. The cyclic cumulative deformation of soil increased with the increase of dynamic deviator stress, and the cyclic cumulative strain curve showed attenuation-stability creeping characteristics. Based on the tests, a formula for softening coefficient related to static deviator stress and dynamic deviator stress was introduced to describe the test results of soft clay under different stress levels. Considering the influence of static deviator stress, dynamic deviator stress and softening coefficient, an equivalent cyclic creep model of soft clay was established. On this basis, a three-dimensional equivalent cyclic creep model was built, and a finite element subroutine was developed. The finite element method for cyclic uplift capacity of caisson was established to analyze the cyclic cumulative deformation of soil. It was verified by comparing with the test results.

Key words: suction caisson foundation, soft clay, strain softening, cumulative deformation, equivalent cyclic creep model, finite element

中图分类号: 

  • TU 411
[1] 豆红强, 谢森华, 简文彬, 王浩, 郭朝旭, . 球状风化花岗岩类土质边坡土-岩界面优势流潜蚀特性研究[J]. 岩土力学, 2024, 45(4): 950-960.
[2] 孙锐, 阳军生, 张庆贺, 杨峰, . 基于网格自适应加密策略的隧道稳定性三维极限分析下限有限元法研究[J]. 岩土力学, 2024, 45(4): 1256-1264.
[3] 李绍毅. 采用有限元+边界元方法研究非饱和地基中群桩基础的动力阻抗[J]. 岩土力学, 2024, 45(3): 895-907.
[4] 毛佳, 余健坤, 邵琳玉, 赵兰浩. 三维可变形圆化多面体离散单元法[J]. 岩土力学, 2024, 45(3): 908-916.
[5] 王刚, 邓泽之, 金伟, 张建民, . 潜蚀的局部守恒有限元和有限体积交替解法[J]. 岩土力学, 2024, 45(3): 917-926.
[6] 王瑞, 胡志平. 铁路路基动力响应的2.5D有限元方法研究现状及展望[J]. 岩土力学, 2024, 45(1): 284-301.
[7] 刘杰锋, 李飒, 段贵娟, 王奕霖, . 稳态剪切条件下中国南海软黏土的相态转变特性及流变模型[J]. 岩土力学, 2023, 44(S1): 341-349.
[8] 应宏伟, 闫旭政, 周建, 龚晓南, 王阳扬, 韩华超, 侯靖. 堤坝软土碎石桩复合地基计算参数研究[J]. 岩土力学, 2023, 44(S1): 669-677.
[9] 刘映晶, 杨杰, 朱汉华, 尹振宇, . 一种新的高渗透性地层中盾构隧道同步注浆浆液损失的多物理场模拟方法[J]. 岩土力学, 2023, 44(9): 2744-2756.
[10] 邓鹏海, 刘泉声, 黄兴. 隧道底板渐进破裂碎胀大变形:一种新的底鼓机制研究[J]. 岩土力学, 2023, 44(5): 1512-1529.
[11] 朱彬, 裴华富, 杨庆, 卢萌盟, 王涛, . 基于随机有限元法的波致海床响应概率分析[J]. 岩土力学, 2023, 44(5): 1545-1556.
[12] HANIFAH Hermil Rizki, RAHARDJO Paulus Pramono, LIM Aswin. 砂土地层圆形深基坑三维分析与测斜仪测量[J]. 岩土力学, 2023, 44(4): 1142-1152.
[13] 王锐松, 郭成超, 林沛元, 王复明, . 富水粉土基坑装配式可回收支护开挖响应分析[J]. 岩土力学, 2023, 44(3): 843-853.
[14] 王瑞, 胡志平, 彭建兵, 王启耀, . 基于二维降阶Hermite插值的铁路路基动力响应2.5D有限元模拟[J]. 岩土力学, 2023, 44(3): 908-915.
[15] 王祖乐, 孔德琼, 杜越明, 朱斌, . 岩土工程连续极限分析方法拓展与验证[J]. 岩土力学, 2023, 44(12): 3531-3540.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 孙 勇. 滑坡面下双排抗滑结构的计算方法研究[J]. , 2009, 30(10): 2971 -2977 .
[2] 王 威,王水林,汤 华,周平根. 基于三维GIS的滑坡灾害监测预警系统及应用[J]. , 2009, 30(11): 3379 -3385 .
[3] 杨海清,周小平. 边坡落石运动轨迹计算新方法[J]. , 2009, 30(11): 3411 -3416 .
[4] 李鸿博,郭小红. 公路连拱隧道土压力荷载的计算方法研究[J]. , 2009, 30(11): 3429 -3434 .
[5] 张强勇,刘德军,贾 超,沈 鑫,刘 健,段 抗. 盐岩油气储库介质地质力学模型相似材料的研制[J]. , 2009, 30(12): 3581 -3586 .
[6] 鲁祖德,陈从新,陈建胜,童志怡,左保成,戴旭明. 岭澳核电三期强风化角岩边坡岩体直剪试验研究[J]. , 2009, 30(12): 3783 -3787 .
[7] 曹雪山,殷宗泽. 非饱和土二维固结简化计算的研究[J]. , 2009, 30(9): 2575 -2580 .
[8] 高 千,王 靖,杨志法,张路青,祝介旺,郑 舰,傅 燕. 龙游石窟1~3号洞室稳定性分析及安全通道路线的选择[J]. , 2009, 30(9): 2713 -2721 .
[9] 马远刚,杨春和. 极限状态及变形量控制下自平衡试桩承载力分析[J]. , 2009, 30(9): 2787 -2791 .
[10] 瞿万波,刘新荣,傅晏,秦晓英. 洞桩法大断面群洞交叉隧道初衬数值模拟[J]. , 2009, 30(9): 2799 -2804 .