岩土力学 ›› 2019, Vol. 40 ›› Issue (12): 4668-4674.doi: 10.16285/j.rsm.2018.1943

• 基础理论与实验研究 • 上一篇    下一篇

加肋土工膜与砂土拉拔试验及界面细观分析

高俊丽,徐宏飞,曹威,袁川   

  1. 上海大学 土木工程系,上海 200444
  • 收稿日期:2018-10-22 出版日期:2019-12-11 发布日期:2020-01-03
  • 作者简介:高俊丽,女,1978年生,博士,高级试验师,主要从事新型土工合成材料在填埋场上的应用
  • 基金资助:
    国家自然科学基金(No.51208293)

Drawing test and mesoscopic analysis of ribbed geomembrane / sandy soil interface

GAO Jun-li, XU Hong-fei, CAO Wei, YUAN Chuan   

  1. Department of Civil Engineering, Shanghai University, Shanghai 200444, China
  • Received:2018-10-22 Online:2019-12-11 Published:2020-01-03
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51208293).

摘要: 为了进一步研究加肋土工膜拉拔试验作用机制,通过室内拉拔试验和粒子图像测速(PIV)分析,研究不同工况下(加肋高度和温度)加肋土工膜与砂土界面的力学性质以及衬垫系统内部颗粒的位移场和速度场分布。拉拔试验结果表明,不同的加肋高度和温度对界面的稳定性有着深刻的影响,极限拉拔阻力随着加肋高度的增加和温度的降低而增大。通过细观分析得出加肋土工膜和砂土界面附近砂土会形成间接影响区。影响区内部的砂土位移和速度比周围砂土颗粒位移和速度大,这是因为肋块在拉拔过程中挤压其左侧的颗粒或带动其整体移动。并且肋块之间的影响区会相互影响扩散,因此对砂土颗粒形成加固作用。试验结果和PIV分析表明,温度和加肋高度对间接影响区有着显著的影响,从而对加肋土工膜与砂土界面的整体稳定性产生影响。

关键词: 加肋土工膜, 室内拉拔试验, 粒子图像测速(PIV), 位移, 速度

Abstract: In order to further study the drawing test mechanism of the ribbed geomembrane, the mesoscopic properties of interface between ribbed geomembrane and sandy soil under different working conditions (ribbed height and temperature), the displacement and velocity field distribution of particles within the liner system were studied using laboratory drawing test and particle image velocimetry(PIV) analysis. The results show that different ribbed heights and temperatures have significant influence on the stability of the interface, and the ultimate drawing resistance increases with the increase of ribbed height and the decrease of temperature. The mesoscopic analysis shows the sandy soil near the interface of ribbed geomembrane and sandy soil can form indirect impact area. The sandy soil displacement and velocity within the indirect impact area are larger than that of surrounding sand particle, this can be explained by that the rib squeezes the left side of the rib or moves it as a whole during the drawing process. Moreover, the indirect impact area between the ribs interacts with each other, and thus causes strengthen effect on sand particles. Experimental results and PIV analysis indicate that temperature and ribbed height have significant effects on the indirect influence zone, so that the two factors have significant influence on the interface stability of ribbed geomembrane and sandy soil.

Key words: ribbed geomembrane, drawing model test, partical image velocimetry(PIV), displacement, velocity

中图分类号: 

  • TU411.6
[1] 赵久彬, 刘元雪, 何少其, 杨骏堂, 柏准, . 三峡库区阶跃变形滑坡水平位移与降雨量 数学统计模型[J]. 岩土力学, 2020, 41(S1): 305-311.
[2] 禹海涛, 张正伟, 李 攀, . 地下结构抗震设计的改进等效反应加速度法[J]. 岩土力学, 2020, 41(7): 2401-2410.
[3] 王立安, 赵建昌, 余云燕, . 瑞利波在非均匀饱和地基中的传播特性[J]. 岩土力学, 2020, 41(6): 1983-1990.
[4] 黄福云, 陈汉伦, 董锐, 单玉麟. 水平低周往复位移下单桩-土相互作用试验研究[J]. 岩土力学, 2020, 41(5): 1625-1634.
[5] 张卢明, 周勇, 范刚, 蔡红雨, 董云. 强震作用下核安全级反倾层状软岩高陡边坡组合支挡结构抗震性能研究与加固效果评价[J]. 岩土力学, 2020, 41(5): 1740-1749.
[6] 田抒平, 高盟, 王滢, 陈青生. Duxseal隔振性能数值分析与现场试验研究[J]. 岩土力学, 2020, 41(5): 1770-1780.
[7] 冯立, 丁选明, 王成龙, 陈志雄. 考虑接缝影响的地下综合管廊振动台模型试验[J]. 岩土力学, 2020, 41(4): 1295-1304.
[8] 宋义敏, 张 悦, 许海亮, 王亚飞, 贺志杰. 基于非均匀特征的岩石蠕滑与黏滑变形演化研究[J]. 岩土力学, 2020, 41(2): 363-371.
[9] 邓涛, 林聪煜, 柳志鹏, 黄明, 陈文菁, . 大位移条件下水平受荷单桩的简明弹塑性计算方法[J]. 岩土力学, 2020, 41(1): 95-102.
[10] 王忠凯, 徐光黎. 盾构掘进、离开施工阶段对地表变形的 影响范围及量化预测[J]. 岩土力学, 2020, 41(1): 285-294.
[11] 王体强, 王永志, 袁晓铭, 汤兆光, 王海, 段雪锋. 基于振动台试验的加速度积分位移方法可靠性研究[J]. 岩土力学, 2019, 40(S1): 565-573.
[12] 吴爽爽, 胡新丽, 章涵, 周昌, 龚辉, . 嵌岩桩负摩阻力现场试验与计算方法研究[J]. 岩土力学, 2019, 40(9): 3610-3617.
[13] 邓茂林, 易庆林, 韩蓓, 周剑, 李卓骏, 张富灵, . 长江三峡库区木鱼包滑坡地表变形规律分析[J]. 岩土力学, 2019, 40(8): 3145-3152.
[14] 许紫刚, 杜修力, 许成顺, 韩润波, 乔磊. 复杂断面地下结构地震反应分析的 广义反应位移法研究[J]. 岩土力学, 2019, 40(8): 3247-3254.
[15] 申翃, 李晓, 雷美清, 徐文博, 余秀玲, . 剪力键支护体系的构想及模型试验研究[J]. 岩土力学, 2019, 40(7): 2574-2580.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!