岩土力学 ›› 2020, Vol. 41 ›› Issue (6): 1983-1990.doi: 10.16285/j.rsm.2019.1236

• 基础理论与实验研究 • 上一篇    下一篇

瑞利波在非均匀饱和地基中的传播特性

王立安1,赵建昌1,余云燕2   

  1. 1. 兰州交通大学 土木工程学院,甘肃 兰州 730070;2. 兰州交通大学 甘肃省轨道交通力学应用工程实验室,甘肃 兰州 730070
  • 收稿日期:2019-07-15 修回日期:2019-11-08 出版日期:2020-06-11 发布日期:2020-08-02
  • 作者简介:王立安,男,1986年生,博士研究生,工程师,主要从事岩土力学、地基与基础工程方面的研究。
  • 基金资助:
    国家自然科学基金(No.51268031)。

Propagation characteristics of Rayleigh wave in non-homogeneous saturated foundation

WANG Li-an1, ZHAO Jian-chang1, YU Yun-yan2   

  1. 1. School of Civil Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China; 2. Gansu Province Engineering Laboratory of Rail Transit Mechanics Application, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
  • Received:2019-07-15 Revised:2019-11-08 Online:2020-06-11 Published:2020-08-02
  • Contact: 赵建昌,男,1962年生,博士,教授,主要从事岩土力学及新型预应力混凝土结构方面的研究。E-mail: 13609382011@163.com E-mail: 513173705@qq.com
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(51268031).

摘要: 考虑地基横观各向同性和非均匀性,建立孔隙率、密度、剪切模量及渗透系数同时随深度变化的非均匀饱和地基模型,模型中考虑参数间的耦连影响,并引入非均匀因子表征地基的不均匀程度。基于Biot多孔介质理论建立以土骨架位移和孔隙水压力为基本未知量的控制方程,采用微分算子法对控制方程进行解耦求解,推导出非均匀饱和地基中瑞利波的频散方程。将推导结果分别退化到均匀饱和地基和单一弹性地基,验证了结果的正确性。通过数值算例,对非均匀饱和地基中瑞利波的传播速度、衰减系数及位移分布进行分析。结果表明:在低频区,饱和地基的非均匀性对瑞利波传播速度、衰减和位移都有显著影响,质点运动轨迹也由此发生变化;随着频率的升高,这种影响逐渐减小,当频率趋于无穷大时,瑞利波速度收敛于弹性地基中的波速;地基非均匀性增大了瑞利波的传播阻抗性,瑞利波位移加速衰减,传播深度小于均匀饱和地基。随着非均匀性增大,质点竖向位移的衰减快于水平位移,这种差异造成质点椭圆运动轨迹的扁率减小。此外,地基中非均匀土层厚度越小,则地基非均匀程度越高,对瑞利波的传播影响越大。

关键词: 非均匀地基, 瑞利波, 频散, 衰减, 位移, 运动轨迹

Abstract: In this study, a model of non-homogeneous saturated foundation is established by considering the transverse isotropy and non-homogeneity of foundation. In this model, the porosity, density, shear modulus and permeability coefficient change along the depth, and the coupling effect between parameters are also considered. Meanwhile, a parameter, non-uniform factor, is introduced to characterize the degree of non-homogeneity of foundation. The governing equation is established based on the Biot porous media theory. The differential operator method is applied to solve the control equation, and then the dispersion equation of Rayleigh wave in non-homogeneous saturated foundation is deduced. Results are verified by degrading the deduced results to homogeneous saturated foundation and single elastic foundation, respectively. Moreover, the propagation velocity, attenuation coefficient and displacement distribution of Rayleigh wave are analyzed using numerical examples. Results show that the non-homogeneity of saturated ground has significant influence on Rayleigh wave propagation velocity, attenuation, and displacement. Additionally, the particle trajectory is changed accordingly. This effect gradually decreases with an increase in the frequency. As the frequency approaches infinity, the Rayleigh wave velocity converges to the wave velocity in homogeneous elastic foundation. The non-homogeneity of foundation increases the impedance of Rayleigh wave propagation and accelerates the attenuation of Rayleigh wave displacement. In addition, the propagation depth is less than that of homogeneous saturated foundation. With the increase in non-homogeneity, the attenuation of vertical displacement of particles is more affected and the attenuation speed is faster than that of horizontal displacement. This difference leads to a small oblateness of the elliptical particle trajectory. Moreover, a smaller thickness of the non-homogeneity soil layer results in more non-homogeneous foundation, which has greater impacts on Rayleigh wave propagation.

Key words: non-homogeneous foundation, Rayleigh wave, dispersion, attenuation, displacement, particle trajectory

中图分类号: 

  • TU 471.4
[1] 谢济仁, 乔世范, 余鹏鲲, 内村太郎, 王功辉, 江耀, 方正, 田京立. 土质滑坡坡表倾斜变形的室内外试验研究[J]. 岩土力学, 2021, 42(3): 681-690.
[2] 李志浩, 肖世国. 不同运动模式的悬臂式挡墙地震永久位移算法[J]. 岩土力学, 2021, 42(3): 723-734.
[3] 张纪蒙, 张陈蓉, 张凯, . 砂土中大直径单桩水平循环加载模型试验研究[J]. 岩土力学, 2021, 42(3): 783-789.
[4] 郑 宏, 张 谭, 王秋生. 弹塑性有限元分析中几个难点问题的一揽子方案[J]. 岩土力学, 2021, 42(2): 301-314.
[5] 赖天文, 雷浩, 武志信, 吴红刚, . 玄武岩纤维增强复合材料在高边坡防护中的 振动台试验研究[J]. 岩土力学, 2021, 42(2): 390-400.
[6] 卢谅, 何林耀, 王宗建, KATSUHIKO ARAI, . 地震作用下加筋土挡墙水平位移分区计算理论[J]. 岩土力学, 2021, 42(2): 401-410.
[7] 韩润波, 许成顺, 杜修力, 许紫刚, . 土-地下结构体系拟静力推覆试验 模型箱类型的优选[J]. 岩土力学, 2021, 42(2): 462-470.
[8] 黄朝煊, 袁文喜, 胡国杰, . 成层软土地基预固结处理后桩基水平 承载力估算方法[J]. 岩土力学, 2021, 42(1): 113-124.
[9] 李绍毅. 土体饱和度对移动荷载引起多层非饱和 铁路地基振动的影响[J]. 岩土力学, 2021, 42(1): 151-159.
[10] 张凯, 张科, 保瑞, 刘享华, 齐飞飞, . 基于优化经验模态分解和聚类分析的滑坡 位移智能预测研究[J]. 岩土力学, 2021, 42(1): 211-223.
[11] 赵久彬, 刘元雪, 何少其, 杨骏堂, 柏准, . 三峡库区阶跃变形滑坡水平位移与降雨量 数学统计模型[J]. 岩土力学, 2020, 41(S1): 305-311.
[12] 李英俊, 夏元友, 王智德. 地震作用下土钉支护边坡震后位移分析[J]. 岩土力学, 2020, 41(9): 3013-3021.
[13] 赵红华, 刘聪, 唐小微, 魏焕卫, 朱丰, . 基于透明土和三维重构技术的空间变形可视 化测量系统的研究[J]. 岩土力学, 2020, 41(9): 3170-3180.
[14] 黄睿, 汤金焕, . RT模式下地震非极限主动土压力的拟动力分析[J]. 岩土力学, 2020, 41(8): 2564-2572.
[15] 丁楚, 余文瑞, 史江伟, 张宇亭, 陈永辉, . 水平循环荷载下桩基变形特性的离心模型试验研究[J]. 岩土力学, 2020, 41(8): 2659-2664.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[2] 荣 冠,王思敬,王恩志,刘顺桂. 白鹤滩河谷演化模拟及P2β3玄武岩级别评估[J]. , 2009, 30(10): 3013 -3019 .
[3] 孙文静,孙德安,孟德林. 饱和膨润土及其与砂混合物的压缩变形特性[J]. , 2009, 30(11): 3249 -3255 .
[4] 贾宇峰,迟世春,林 皋. 考虑颗粒破碎影响的粗粒土本构模型[J]. , 2009, 30(11): 3261 -3266 .
[5] 倪骁慧,朱珍德,赵 杰,李道伟,冯夏庭. 岩石破裂全程数字化细观损伤力学试验研究[J]. , 2009, 30(11): 3283 -3290 .
[6] 马 青,赵均海,魏雪英. 基于统一强度理论的巷道围岩抗力系数研究[J]. , 2009, 30(11): 3393 -3398 .
[7] 刘 润,闫 玥,闫澍旺,乔春生. 某码头软黏土岸坡破坏机制分析及重建[J]. , 2009, 30(11): 3417 -3422 .
[8] 张 波,李术才,杨学英,孙国富,葛颜慧. 三维黏弹性介质人工边界研究[J]. , 2009, 30(11): 3469 -3475 .
[9] 肖衡林,张晋锋,何 俊. 基于分布式光纤传感技术的流速测量方法研究[J]. , 2009, 30(11): 3543 -3547 .
[10] 杨 强,刘耀儒,冷旷代,吕庆超,杨春和. 能源储备地下库群稳定性与连锁破坏分析[J]. , 2009, 30(12): 3553 -3561 .