岩土力学 ›› 2020, Vol. 41 ›› Issue (9): 3170-3180.doi: 10.16285/j.rsm.2019.1973

• 测试技术 • 上一篇    

基于透明土和三维重构技术的空间变形可视 化测量系统的研究

赵红华1, 2,刘聪3, 4,唐小微3, 4,魏焕卫5,朱丰3, 4   

  1. 1. 大连理工大学 工业装备与结构分析国家重点实验室,辽宁 大连 116024;2. 大连理工大学 工程力学系,辽宁 大连 116024; 3. 大连理工大学 海岸与近海工程国家重点实验室,辽宁 大连 116024;4. 大连理工大学 岩土工程研究所,辽宁 大连 116024; 5. 山东建筑大学 土木工程学院,山东 济南 250100
  • 收稿日期:2019-11-20 修回日期:2020-03-02 出版日期:2020-09-11 发布日期:2020-10-22
  • 通讯作者: 刘聪,男,1990年生,博士研究生,主要从事透明土测试技术开发及大变形离散元模拟研究。E-mail: LCcong@mail.dlut.edu.cn E-mail: zhaoh@dlut.edu.cn
  • 作者简介:赵红华,女,1977年生,博士,副教授,博士生导师,主要从事透明土技术、非饱和土与桩基工程研究。
  • 基金资助:
    国家自然科学基金项目(No.11672066)。

Study of visualization measurement system of spatial deformation based on transparent soil and three-dimensional reconstruction technology

ZHAO Hong-hua1, 2, LIU Cong3, 4, TANG Xiao-wei3, 4, WEI Huan-wei5, ZHU Feng3, 4   

  1. 1. State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, Liaoning 116024, China; 2. Department of Engineering Mechanics, Dalian University of Technology, Dalian, Liaoning 116024, China; 3. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China; 4. Institute of Geotechnical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China; 5. School of Civil Engineering, Shandong Jianzhu University, Jinan, Shandong 250100, China
  • Received:2019-11-20 Revised:2020-03-02 Online:2020-09-11 Published:2020-10-22
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(11672066).

摘要: 常规的可视化模型试验中,能够观察到二维观测视窗中的位移变形,但是却无法获取三维问题的离面位移以及三维空间变形场。为此,基于透明土模型试验,自主开发了一套自动层析扫描测试装置,通过高精度电动线性平台控制着相机和激光器同步运动,获取一系列二维图片。利用改进的图像变形测量方法进行图像后处理。在此基础上,自主编写了相应的三维重构的体绘制程序,用于构建变形后的三维位移场。为了验证空间变形可视化测量系统的可行性,开展了方形基础和圆形基础透明土静压试验。试验结果表明:重构后的三维竖向位移和水平位移等值面云图的变化规律和理论预测结果以及前人文献中所提到的规律一致,三维矢量位移场可以直观地显示不同位置的土体运动规律,能弥补二维观测技术不能反映离面位移的局限性。该研究不仅可以进一步地揭示静压试验中的三维空间变形问题,同时还证明该方法对于实现物理模型试验中观测三维空间变形问题是可行的。

关键词: 透明土, 层析扫描, 三维重构, 三维位移场, 静压试验

Abstract: In the conventional visualization model test, the displacement and deformation in the two-dimensional observation window can be observed, but the out-of-plane displacement of the three-dimensional(3D) problem and the 3D deformation field cannot be obtained. Therefore, based on the transparent soil model test, a set of automatic tomographic scanning test device is independently developed in this study. The synchronous motion of the camera with the laser device is controlled by a high-precision electric linear platform to obtain a series of two-dimensional images. The improved image deformation measurement method is used for image post-processing. On this basis, the corresponding 3D reconstruction volume rendering program is coded to construct the 3D displacement field after deformation. In order to verify the feasibility of the visualization measurement system of spatial deformation, static pressure tests of square foundation and circular foundation in transparent soil are carried out. The test results show that the contour of the 3D vertical displacement and horizontal displacement after reconstruction are consistent with the theoretical prediction results and with those previously presented in the literature. The 3D vector displacement field can directly show the movement of soil mass at different positions, which eliminate that the 2D observation technique cannot reflect the out-of-plane displacement. This study not only further reveals the spatial deformation problem in static pressure test, but also provides a feasible method for realizing the observation of spatial deformation in the physical model test.

Key words: transparent soil, tomographic scanning, 3D reconstruction, 3D displacement field, static pressure tests

中图分类号: 

  • TU 433
[1] 杨春和, 张超, 李全明, 于玉贞, 马昌坤, 段志杰, . 大型高尾矿坝灾变机制与防控方法[J]. 岩土力学, 2021, 42(1): 1-17.
[2] 王刚, 秦相杰, 江成浩, 张振宇. 温度作用下CT三维重建煤体微观 结构的渗流和变形模拟[J]. 岩土力学, 2020, 41(5): 1750-1760.
[3] 周东, 刘汉龙, 仉文岗, 丁选明, 杨昌友, . 被动桩侧土体位移场的透明土模型试验[J]. 岩土力学, 2019, 40(7): 2686-2694.
[4] 刘语, 张巍, 梁小龙, 许林, 唐心煜. 南京粉细砂空间孔隙结构表征单元体确定[J]. 岩土力学, 2019, 40(7): 2723-2729.
[5] 周航, 袁井荣, 刘汉龙, 楚剑, . 矩形桩沉桩挤土效应透明土模型试验研究[J]. 岩土力学, 2019, 40(11): 4429-4438.
[6] 王本鑫, 金爱兵, 赵怡晴, 王贺, 孙浩, 刘佳伟, 魏余栋, . 基于CT扫描的含非贯通节理3D打印试件 破裂规律试验研究[J]. 岩土力学, 2019, 40(10): 3920-3927.
[7] 孔纲强,李 辉,王忠涛,文 磊,. 透明砂土与天然砂土动力特性对比[J]. , 2018, 39(6): 1935-1940.
[8] 田 威,裴志茹,韩 女. 基于CT扫描与3D打印技术的岩体三维重构及力学特性初探[J]. , 2017, 38(8): 2297-2305.
[9] 常 艳,雷振坤,赵红华,于绅坤, . 熔融石英粒径对透明土位移测量精度的影响[J]. , 2017, 38(2): 493-500.
[10] 孙 伟,吴爱祥,侯克鹏,杨 溢,刘 磊,. 基于X-Ray CT试验的塌陷区回填体孔隙结构研究[J]. , 2017, 38(12): 3635-3642.
[11] 周俊宏,宫全美,周顺华,韩高孝, . 盾构隧道抬升作用下极限上覆土压力计算方法[J]. , 2016, 37(7): 1969-1976.
[12] 孔纲强 ,孙学谨 ,曹兆虎 ,周 杨 , . 楔形桩和等截面桩中性点位置可视化对比模型试验[J]. , 2015, 36(S1): 38-42.
[13] 李 果 ,张 茹 ,徐晓炼 ,张艳飞 , . 三轴压缩煤岩三维裂隙CT图像重构及体分形维研究[J]. , 2015, 36(6): 1633-1642.
[14] 孔纲强 ,曹兆虎 ,周 航 ,邓宗伟 ,郭尤林,. 极限荷载下纵向截面异形桩破坏形式对比模型试验研究[J]. , 2015, 36(5): 1333-1338.
[15] 曹兆虎 ,孔纲强 ,周 航 ,耿之周,. 基于透明土的静压楔形桩沉桩效应模型试验研究[J]. , 2015, 36(5): 1363-1367.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘振平,贺怀建,李 强,朱发华. 基于Python的三维建模可视化系统的研究[J]. , 2009, 30(10): 3037 -3042 .
[2] 冷伍明,杨 奇,刘庆潭,聂如松. 软基高桥台桩-土相互作用计算新方法研究[J]. , 2009, 30(10): 3079 -3085 .
[3] 李鸿博,郭小红. 公路连拱隧道土压力荷载的计算方法研究[J]. , 2009, 30(11): 3429 -3434 .
[4] 兰海涛,李 谦,韩春雨. 基于广义回归神经网络的边坡稳定性评价[J]. , 2009, 30(11): 3460 -3463 .
[5] 沈 扬,周 建,龚晓南,刘汉龙,. 考虑主应力方向变化的原状软黏土应力应变性状试验研究[J]. , 2009, 30(12): 3720 -3726 .
[6] 岑威钧,Erich Bauer,Sendy F . Tantono. 考虑湿化效应的堆石料Gudehus-Bauer 亚塑性模型应用研究[J]. , 2009, 30(12): 3808 -3812 .
[7] 顾强康,李 宁,黄文广. 机场高填土地基工后不均匀沉降指标研究[J]. , 2009, 30(12): 3865 -3870 .
[8] 张鸿飞,程效军,高 攀,周鑫鑫. 隧道衬砌空洞探地雷达图谱正演模拟研究[J]. , 2009, 30(9): 2810 -2814 .
[9] 詹永祥,蒋关鲁. 无碴轨道路基基床动力特性的研究[J]. , 2010, 31(2): 392 -396 .
[10] 赵旭峰,孙 钧. 海底隧道风化花岗岩流变试验研究[J]. , 2010, 31(2): 403 -406 .