岩土力学 ›› 2022, Vol. 43 ›› Issue (12): 3259-3269.doi: 10.16285/j.rsm.2022.0083

• 基础理论与实验研究 • 上一篇    下一篇

基于数字图像分析的土工合成材料加筋砂土拉拔试验研究

王家全1, 2,祁航翔1, 2,林志南1, 2,唐毅1, 2   

  1. 1. 广西科技大学 土木建筑工程学院,广西 柳州 545006;2. 广西科技大学 广西壮族自治区岩土灾变与生态治理工程研究中心,广西 柳州 545006)
  • 收稿日期:2022-01-17 修回日期:2022-03-02 出版日期:2022-12-28 发布日期:2023-01-02
  • 通讯作者: 林志南,男,1987年生,博士,讲师,主要从事岩土工程方面的研究。E-mail: zhinan_lin@gxust.edu.cn E-mail:wjquan1999@163.com
  • 作者简介:王家全,男,1981年生,博士,教授,主要从事加筋土结构、地基基础工程、土木工程灾害防治等方面的研究。
  • 基金资助:
    国家自然科学基金(No.41962017);广西自然科学基金重点项目(No.2022GXNSFDA035081);广西高等学校高水平创新团队及卓越学者计划项目(桂教人才[2020]6号);广西研究生教育创新计划项目(No.YCSW2021310)。

Pull-out test on geosynthetic reinforced sand based on digital image analysis

WANG Jia-quan1, 2, QI Hang-xiang1, 2, LIN Zhi-nan1, 2, TANG Yi1, 2   

  1. 1. College of Civil and Architectural Engineering, Guangxi University of Science and Technology, Liuzhou, Guangxi 545006, China; 2. Guangxi Zhuang Autonomous Region Engineering Research Center of Geotechnical Disaster and Ecological Control, Guangxi University of Science and Technology, Liuzhou, Guangxi 545006, China
  • Received:2022-01-17 Revised:2022-03-02 Online:2022-12-28 Published:2023-01-02
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (41962017), the Key Program of Natural Science Foundation of Guangxi of China (2022GXNSFDA035081), the High Level Innovation Team and Outstanding Scholars Program of Guangxi Institutions of Higher Learning of China and the Innovation Project of Guangxi Graduate Education (YCSW2021310).

摘要: 由于加筋土界面作用的复杂性,加筋土工程建设中铺设土工格栅时往往采用经验的方法,很大程度上造成了土工格栅的浪费及工程安全隐患,理清不同填料筋土界面作用的影响范围,有助于确定加筋土结构的合理加筋间距。为了揭示不同填料筋土界面作用的影响范围,采用4种不同类型的砂土与格栅在不同法向应力下进行了一系列的拉拔试验,并结合数字图像量测技术,分析了不同类型砂土下界面剪切带厚度、颗粒位移矢量、格栅拉拔阻力峰值及应变等演变规律。研究表明:界面剪切带厚度H随法向应力σ v与砂土平均粒径50的增加而增大,通过多变量拟合的方法,得到了Hσ v50三者之间的函数表达式;格栅在拉拔过程中,砂土颗粒位移矢量以土工格栅为界有着显著的差别,格栅上部的颗粒位移矢量明显大于下部颗粒,且在格栅上下一定范围内会形成颗粒位移矢量集中带;拉拔阻力峰值随σ v50的增加而增大;不同类型砂土各区段的格栅应变均表现出由前向后依次递减的趋势。

关键词: 砂土类型, 拉拔试验, 格栅应变, 界面剪切带, 位移矢量

Abstract:

Due to the complexity of the reinforced soil interface, the empirical methods are often used when laying geogrid in reinforced soil engineering construction, which largely causes the waste of geogrids and engineering safety hazards. Clarifying the influence range of the interfacial action of reinforced soil with different fillers is helpful to determine the reasonable reinforcement spacing of reinforced soil structures. In order to reveal the influence range of interface action between reinforcement and soil of different fillers, a series of pull-out tests was carried out with four types of sand and geogrid under different normal stresses. By combining with digital image measurement technology, the evolution laws of interfacial shear band thickness, particle displacement vector, peak pullout resistance, and strain of geogrid for different types of sand were analyzed. The results show that the thickness of interfacial shear band H increases with the increase of normal stress σv and the average particle size of sand d50. Through the multivariate fitting method, the function expressions among the thickness of the interfacial shear band H, the normal stress σ v and the average particle size of the sand 50 are obtained. In the pull-out process of geogrid, the displacement vector of sand particles is significantly different when the geogrid is taken as the boundary. The displacement vector of particles above the geogrid is significantly larger than that below the geogrid, and there is a concentration band of particle displacement vectors in a certain range above and below the geogrid. The peak pullout resistance increases with the increase of normal stress σ v and the average particle size of sand 50. The geogrid strain of each section of different types of sand shows a decreasing trend from the front to the rear.

Key words: types of sand, pull-out test, geogrid strain, interface shear band, displacement vector

中图分类号: 

  • TU431
[1] 黄炜, 简文彬, 杨坚, 豆红强, 罗金妹, . 多支盘锚杆的原型试验与荷载传递特征分析[J]. 岩土力学, 2023, 44(2): 520-530.
[2] 王家全, 康博文, 周圆兀, 唐滢, . 填料粗粒含量对筋土界面拉拔性状的影响[J]. 岩土力学, 2022, 43(5): 1249-1260.
[3] 姜彤, 翟天雅, 张俊然, 赵金玓, 王俪锦, 宋陈雨, 潘旭威. 基于粒子图像测速技术的黄土径向劈裂试验研究[J]. 岩土力学, 2021, 42(8): 2120-2126.
[4] 冯忠居, 江冠, 赵瑞欣, 龙厚胜, 王政斌, 张正旭, . 基于多因素耦合效应的锚索预应力长期损失研究[J]. 岩土力学, 2021, 42(8): 2215-2224.
[5] 陈成, 段永达, 芮瑞, 汪伦. 基于拉拔试验和离散元模拟的单、双层土工 格栅加固道砟的研究[J]. 岩土力学, 2021, 42(4): 954-962.
[6] 杨坚, 简文彬, 黄炜, 黄聪惠, 罗金妹, 李先忠, . 注浆支盘式锚杆拉拔试验及极限承载力计算[J]. 岩土力学, 2021, 42(4): 1126-1132.
[7] 金青, 王艺霖, 崔新壮, 王成军, 张珂, 刘正银, . 拉拔作用下土工合成材料在风化料-废弃轮胎 橡胶颗粒轻质土中的变形行为研究[J]. 岩土力学, 2020, 41(2): 408-418.
[8] 高俊丽, 徐宏飞, 曹威, 袁川. 加肋土工膜与砂土拉拔试验及界面细观分析[J]. 岩土力学, 2019, 40(12): 4668-4674.
[9] 冯君, 王洋, 张俞峰, 黄林, 何长江, 吴红刚, . 玄武岩纤维与钢筋锚杆锚固性能现场对比试验研究[J]. 岩土力学, 2019, 40(11): 4185-4193.
[10] 赵象卓,张宏伟,CAO Chen,张 明,张怀东,韩 军, . 不同围岩条件下锚杆肋间距与锚固力优化研究[J]. , 2018, 39(4): 1263-1270.
[11] 郑俊杰,曹文昭,周燕君,江金国. 三向土工格栅筋-土界面特性拉拔试验研究[J]. , 2017, 38(2): 317-324.
[12] 毕冬宾,尤志嘉,刘 群,王程程,时 健. 土层锚固体复合界面单元形式及力学效应研究[J]. , 2017, 38(1): 277-283.
[13] 张向东 ,王 帅 ,赵阳豪 ,孙小彬,. 基于端锚黏结式锚杆静、动载试验的非均匀受力锚杆单元[J]. , 2016, 37(1): 269-278.
[14] 蔡剑韬. 土工格栅加筋膨胀土拉拔试验研究[J]. , 2015, 36(S1): 204-208.
[15] 贾敏才 ,强 晓 ,叶建忠,. HDPE和PET土工格栅加筋路堤作用的对比研究[J]. , 2015, 36(S1): 491-495.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .