›› 2011, Vol. 32 ›› Issue (S1): 100-105.

• 基础理论与实验研究 • 上一篇    下一篇

失水过程孔隙结构、孔隙比、含水率变化规律

李 旭1, 2,张利民3,敖国栋1   

  1. 1. 北京交通大学 土木与建筑工程学院,北京100044;2. 武汉大学 水资源与水电工程科学国家重点实验室,武汉 430072; 3. 香港科技大学 土木系,香港
  • 收稿日期:2011-02-18 出版日期:2011-05-15 发布日期:2011-05-16
  • 作者简介:李旭,男,1980年生,博士,副教授,主要从事数值流形方法、非饱和土力学、岩土渗流分析方面的研究工作

Variations of pore structure, void ratio, and water content in soil drying process

LI Xu1, 2, ZHANG Li-min3, AO Guo-dong1   

  1. 1. School of Civil Engineering and Architecture, Beijing Jiaotong University, Beijing 100044 China; 2. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China; 3. School of Civil Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
  • Received:2011-02-18 Online:2011-05-15 Published:2011-05-16

摘要: 当土体总应力状态保持不变时,基质吸力的提高是导致孔隙水排出、土样收缩、孔隙结构改变的主要原因。对于特定吸力下的土样,其微观孔隙结构决定了土壤孔隙比;而土壤孔隙结构,土壤基质吸力共同决定了土壤的含水率。假定在失水过程中,当孔隙水尚未排出时,其土壤孔隙孔径不会收缩,孔隙体积保持不变。可通过吸力建立起变化的土壤孔隙体积曲线和土-水特征曲线、土壤收缩曲线之间的对应关系:(1)累计孔隙体积曲线的包络线即为实际发生的土水特征曲线;(2)基于累计孔隙体积曲线,能够有效确定土样收缩曲线的上下限范围

关键词: 孔隙结构, 土-水特征曲线, 收缩, 吸力, 失水过程

Abstract: During the drying process of a soil under constant total stresses, the increase of soil suction will induce the drainage of pore-water and the shrinkage of soil pore-structure. For a soil at a particular state, the microstructure determines its void ratio; and the soil suction determines the water content. During the drying process, if the pores are assumed not to shrink until the pore-water drains, then soil suction provides a bridge between the soil microstructure and soil draining behavior represented by the soil-water characteristic curve and the soil shrinkage curve: (1) the envelope of the cumulative pore volume curves is the soil-water characteristic curve; (2) the shrinkage curve is found to locate in a narrow range which can be determined using the cumulative pore volume curve.

中图分类号: 

  • TU 443
[1] 陈仁朋, 王朋飞, 刘鹏, 程威, 康馨, 杨微, . 路基煤矸石填料土-水特征曲线试验研究[J]. 岩土力学, 2020, 41(2): 372-378.
[2] 王立业, 周凤玺, 秦虎, . 饱和盐渍土分数阶蠕变模型及试验研究[J]. 岩土力学, 2020, 41(2): 543-551.
[3] 李潇旋, 李涛, 彭丽云, . 控制吸力循环荷载下非饱和黏性土 的弹塑性双面模型[J]. 岩土力学, 2020, 41(2): 552-560.
[4] 彭家奕, 张家发, 沈振中, 叶加兵, . 颗粒形状对粗粒土孔隙特征和渗透性的影响[J]. 岩土力学, 2020, 41(2): 592-600.
[5] 戴国亮, 朱文波, 郭晶, 龚维明, 赵学亮, . 软黏土中吸力式沉箱基础竖向抗拔承载 特性试验研究[J]. 岩土力学, 2019, 40(S1): 119-126.
[6] 王欢, 陈群, 王红鑫, 张文举, . 不同压实度和基质吸力的粉煤灰三轴试验研究[J]. 岩土力学, 2019, 40(S1): 224-230.
[7] 李玲, 刘金泉, 刘造保, 刘桃根, 王伟, 邵建富, . 砂-黏土混合物高压压实性能试验研究[J]. 岩土力学, 2019, 40(9): 3502-3514.
[8] 李杰林, 朱龙胤, 周科平, 刘汉文, 曹善鹏, . 冻融作用下砂岩孔隙结构损伤特征研究[J]. 岩土力学, 2019, 40(9): 3524-3532.
[9] 刘语, 张巍, 梁小龙, 许林, 唐心煜. 南京粉细砂空间孔隙结构表征单元体确定[J]. 岩土力学, 2019, 40(7): 2723-2729.
[10] 洪本根, 罗嗣海, 胡世丽, 王观石, 姚康, . 基质吸力对非饱和离子型稀土抗剪强度的影响[J]. 岩土力学, 2019, 40(6): 2303-2310.
[11] 李书兆, 王忠畅, 贾 旭, 贺林林, . 软黏土中张紧式吸力锚循环承载力简化计算方法[J]. 岩土力学, 2019, 40(5): 1704-1712.
[12] 陶高梁, 吴小康, 甘世朝, 肖衡林, 马 强, 罗晨晨, . 不同初始孔隙比下非饱和黏土渗透性 试验研究及模型预测[J]. 岩土力学, 2019, 40(5): 1761-1770.
[13] 王士权, 魏明俐, 何星星, 张亭亭, 薛 强, . 基于核磁共振技术的淤泥固化水分转化机制研究[J]. 岩土力学, 2019, 40(5): 1778-1786.
[14] 王娟娟, 郝延周, 王铁行. 非饱和压实黄土结构特性试验研究[J]. 岩土力学, 2019, 40(4): 1351-1357.
[15] 郑国锋, 郭晓霞, 邵龙潭, . 基于状态曲面的非饱和土强度准则及其验证[J]. 岩土力学, 2019, 40(4): 1441-1448.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .
[2] 张文杰,陈云敏. 垃圾填埋场抽水试验及降水方案设计[J]. , 2010, 31(1): 211 -215 .
[3] 宫伟力,安里千,赵海燕,毛灵涛. 基于图像描述的煤岩裂隙CT图像多尺度特征[J]. , 2010, 31(2): 371 -376 .
[4] 万 智,董 辉,刘宝琛. 基于正交设计下SVM滑坡变形时序回归预测的超参数选择[J]. , 2010, 31(2): 503 -508 .
[5] 孙曦源,栾茂田,唐小微. 饱和软黏土地基中桶形基础水平承载力研究[J]. , 2010, 31(2): 667 -672 .
[6] 王明年,郭 军,罗禄森,喻 渝,杨建民,谭忠盛. 高速铁路大断面黄土隧道深浅埋分界深度研究[J]. , 2010, 31(4): 1157 -1162 .
[7] 胡勇刚,罗 强,张 良,黄 晶,陈亚美. 基于离心模型试验的水泥土搅拌法加固斜坡软弱土地基变形特性分析[J]. , 2010, 31(7): 2207 -2213 .
[8] 谭峰屹,姜志全,李仲秋,颜惠和. 附加质量法在昆明新机场填料压实密度检测中的应用研究[J]. , 2010, 31(7): 2214 -2218 .
[9] 柴 波,殷坤龙,肖拥军. 巴东新城区库岸斜坡软弱带特征[J]. , 2010, 31(8): 2501 -2506 .
[10] 杨召亮,孙冠华,郑 宏. 基于潘氏极大值原理的边坡稳定性的整体分析法[J]. , 2011, 32(2): 559 -563 .