›› 2013, Vol. 34 ›› Issue (5): 1487-1494.

• 数值分析 • 上一篇    下一篇

堆石料单轴流变试验的颗粒流模拟

邵 磊1, 2,迟世春1   

  1. 1. 大连理工大学 建设工程学部,辽宁 大连 116024;2. 中国水电顾问集团成都勘测设计研究院,成都 610072
  • 收稿日期:2012-02-22 出版日期:2013-05-10 发布日期:2013-05-14
  • 作者简介:邵磊,男,1983年生,博士,主要从事土石坝数值计算方面的研究工作。
  • 基金资助:

    国家自然科学基金项目(No. 50879007,No. 50979014,No. 51179024)

Numerical study of uniaxial rheological tests for rockfill by particle flow code

SHAO Lei1,2,CHI Shi-chun1   

  1. 1. Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China; 2. HydroChina Chengdu Engineering Corporation, Chengdu 610072, China
  • Received:2012-02-22 Online:2013-05-10 Published:2013-05-14

摘要: 岩石断裂力学的亚临界裂缝扩展理论认为微裂缝扩展可导致岩石破碎,即岩石颗粒破碎具有时间效应。根据亚临界裂缝扩展理论,提出了考虑微裂缝扩展导致堆石颗粒破碎时间效应的数值流变模拟新方法,并进行了考虑颗粒不同典型破碎模式的单轴流变颗粒流数值试验。在对比数值与室内流变试验曲线的基础上,分析了数值流变过程中颗粒破碎情况与颗粒体内部结构发展过程等。研究成果表明,两种试验手段得到的堆石流变的发展趋势基本一致,由微裂缝扩展引起的颗粒延时破碎是堆石流变的主要原因之一,深化了对堆石料变形机制的认识。

关键词: 亚临界裂缝扩展, 堆石料, 流变, 颗粒流

Abstract: Based on the theory of subcritical expansion of cracks, rockfill particles breakage with the time-dependent effect is caused by the extension of microcracks. Through a new way to simulate the rheological behavior of rockfill, a series of numerical uniaxial rheological tests are carried out by the three-dimensional particle flow code method, according to the theory of subcritical expansion of cracks. The simulation results are partially compared with the lab experiments, and good agreement has been achieved. The evolution of microscopic characteristics for rockfill samples and particles breakage are presented visually during the process of numerical rheology. The analytical results show that rheology is the main results of the delayed particles breakage caused by the extension of microscopic crack, which further develops the recognition of the rheological mechanism of rockfill.

Key words: subcritical expansion of cracks, rockfill, rheology, particle flow code

中图分类号: 

  • TV 641.4
[1] 刘忠玉, 夏洋洋, 张家超, 朱新牧. 考虑Hansbo渗流的饱和黏土 一维弹黏塑性固结分析[J]. 岩土力学, 2020, 41(1): 11-22.
[2] 刘泉声, 罗慈友, 朱元广, 蒋景东, 刘鹤, 彭星新, 潘玉丛, . 流变应力恢复法压力传感器传感 单元方位布设研究[J]. 岩土力学, 2020, 41(1): 336-341.
[3] 任青阳, 张黄梅, 刘佳申, . 两种卸荷路径下泥岩流变特性试验研究[J]. 岩土力学, 2019, 40(S1): 127-134.
[4] 刘斯宏, 沈超敏, 毛航宇, 孙 屹. 堆石料状态相关弹塑性本构模型[J]. 岩土力学, 2019, 40(8): 2891-2898.
[5] 丁艳辉, 张丙印, 钱晓翔, 殷 殷, 孙 逊. 堆石料湿化变形特性试验研究[J]. 岩土力学, 2019, 40(8): 2975-2981.
[6] 张凌凯, 王睿, 张建民, 唐新军, . 考虑颗粒破碎效应的堆石料静动力本构模型[J]. 岩土力学, 2019, 40(7): 2547-2554.
[7] 孔宪京, 宁凡伟, 刘京茂, 邹德高, 周晨光, . 应力路径和干湿状态对堆石料颗粒破碎的影响研究[J]. 岩土力学, 2019, 40(6): 2059-2065.
[8] 储昭飞, 刘保国, 任大瑞, 宋宇, 马强, . 软岩流变相似材料的研制及物理模型试验应用[J]. 岩土力学, 2019, 40(6): 2172-2182.
[9] 刘忠玉, 崔鹏陆, 郑占垒, 夏洋洋, 张家超. 基于非牛顿指数渗流和分数阶Merchant模型的 一维流变固结分析[J]. 岩土力学, 2019, 40(6): 2029-2038.
[10] 王 涛, 刘斯宏, 郑守仁, 鲁 洋, . 掺复合浆液堆石料压缩特性试验研究[J]. 岩土力学, 2019, 40(4): 1420-1426.
[11] 魏 星, 张 昭, 王 刚, 张建民, . 饱和砂土液化后大变形机制的离散元细观分析[J]. 岩土力学, 2019, 40(4): 1596-1602.
[12] 吴顺川, 马 骏, 程 业, 成子桥, 李建宇, . 平台巴西圆盘研究综述及三维启裂点研究[J]. 岩土力学, 2019, 40(4): 1239-1247.
[13] 郑黎明, 张洋洋, 李子丰, 马平华, 阳鑫军, . 低频波动下考虑孔隙度与压力不同程度变 化的岩土固结渗流分析[J]. 岩土力学, 2019, 40(3): 1158-1168.
[14] 丛 怡, 丛 宇, 张黎明, 贾乐鑫, 王在泉, . 大理岩加、卸荷破坏过程的三维颗粒流模拟[J]. 岩土力学, 2019, 40(3): 1179-1186.
[15] 张成功, 尹振宇, 吴则祥, 金银富, . 颗粒形状对粒状材料圆柱塌落影响的 三维离散元模拟 [J]. 岩土力学, 2019, 40(3): 1197-1203.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[2] 闻世强,陈育民,丁选明,左威龙. 路堤下浆固碎石桩复合地基现场试验研究[J]. , 2010, 31(5): 1559 -1563 .
[3] 杨天鸿,陈仕阔,朱万成,刘洪磊,霍中刚,姜文忠. 煤层瓦斯卸压抽放动态过程的气-固耦合模型研究[J]. , 2010, 31(7): 2247 -2252 .
[4] 胡秀宏,伍法权. 岩体结构面间距的双参数负指数分布研究[J]. , 2009, 30(8): 2353 -2358 .
[5] 李卫超,熊巨华,杨 敏. 分层土中水泥土围护结构抗倾覆验算方法的改进[J]. , 2011, 32(8): 2435 -2440 .
[6] 张桂民 ,李银平 ,施锡林 ,杨春和 ,王李娟. 一种交互层状岩体模型材料制备方法及初步试验研究[J]. , 2011, 32(S2): 284 -289 .
[7] 李术才 ,赵 岩 ,徐帮树 ,李利平 ,刘 钦 ,王育奎 . 海底隧道涌水量数值计算的渗透系数确定方法[J]. , 2012, 33(5): 1497 -1504 .
[8] 王洪新 ,孙玉永 . 考虑基坑开挖宽度的杆系有限元算法及试验研究[J]. , 2012, 33(9): 2781 -2787 .
[9] 刘飞禹 ,余 炜 ,蔡袁强 ,张孟喜 . 桩承式加筋地基室内试验及数值分析[J]. , 2012, 33(S1): 244 -250 .
[10] 陈志坚 ,陈欣迪 ,唐 勇 ,张宁宁 . 超大型深水群桩基础的传感器保护技术[J]. , 2012, 33(11): 3509 -3515 .