›› 2014, Vol. 35 ›› Issue (11): 3231-3239.

• 岩土工程研究 • 上一篇    下一篇

动荷载下桩承式路堤的承载特性及机制研究

许朝阳1, 2,周 锋1,吕 惠1,马耀仁1,孟 涛1,完绍金1   

  1. 1.扬州大学 建筑科学与工程学院,江苏 扬州 225009;2.同济大学 地下建筑工程系,上海 200092
  • 收稿日期:2013-09-16 出版日期:2014-11-11 发布日期:2014-12-10
  • 作者简介:许朝阳,女,1971年生,博士,副教授,主要从事岩土工程地基处理、数值计算等方面研究工作。
  • 基金资助:
    国家自然科学基金(No. 51278446,No. 50908198)。

Bearing behavior and mechanism of pile-supported embankment under dynamic load

XU Zhao-yang1, 2 , ZHOU Feng1, LÜ Hui1, MA Yao-ren1, MENG Tao1, WAN Shao-jin1   

  1. 1. College of Civil Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China; 2. Department of Geotechnical Engineering, Tongji University, Shanghai 200092,China
  • Received:2013-09-16 Online:2014-11-11 Published:2014-12-10

摘要: 对于桩承式路堤作用效应的研究目前主要侧重于对静荷载作用下桩土应力比和土拱效应等,较少考虑动荷载的影响,而车辆运行产生的动应力会对路堤中的土拱产生一定的影响,进而影响桩承式路堤的整体性能。为了分析静、动荷载作用下桩承式加筋路堤的性能变化,采用可视化模型试验和颗粒流数值模拟相结合的方法,对桩承式路堤在静载和动载下的应力传递和变形性状进行研究,分析动载作用下填土高度、桩帽、桩距、加筋形式、荷载频率的影响。试验结果表明,在动载下无筋路堤的桩顶的应力减小,而桩间的应力和位移增大,并且变化的幅度均比加筋路堤大,加筋材料的设置有利于减小动载的影响效应,但不同加筋形式下桩承式路堤的工作性状有所不同,受动载影响程度的大小主要与土拱效应的强弱有关。设置双层加筋时,因加筋材料与周围砂土形成半刚性平台,土拱效应减弱,故受动载影响的程度最小,单层加筋时,格栅设于桩顶上方10 cm比格栅置于桩顶受动载影响的程度明显减小,颗粒流的模拟结果验证了以上结果,并且进一步得出随荷载频率的增加、填土高度与桩净距的减小,动载的影响效应增大的结论。

关键词: 桩承式路堤, 动荷载, 二维颗粒流分析, 桩帽大小, 加筋形式, 荷载频率, 填土高度

Abstract: At present, studies of pile-supported embankment focus mainly on the stress ratio of pile to soil and the soil arch effect under static loading, less considering effects of dynamic loading. But dynamic stress resulting from vehicle operation has a certain influence on the embankment of soil arch, which affects the overall behavior of pile-supported embankment. In order to analyze the change of bearing behavior of pile-supported embankment under static and dynamic loading, through visible laboratory test and analysis of particle flow code(PFC), the mechanism of stress transfer and deformation of pile-supported embankment under static and dynamic loading have been studied. Some factors affecting soil arching are investigated, such as filling height, pile cap size, pile spacing, reinforcing modes, loading frequency. The results show that the stress on top of piles decreases under dynamic loading, which resulted in increase of stress between piles and displacement of embankment. The effect of dynamic loading on unreinforced embankment is larger than that on reinforced embankment. And reinforcement material is helpful to reduce the impact of dynamic loading. The mechanisms of load transfer and deformation are different depending on the types and numbers of the geogrid; and the impact of dynamic loading is mainly related to the strength of the soil arch effect. In the case of piled embankment reinforced by two layer geogrids, because the mechanism of semi-rigid platform takes effect due to the interaction of reinforcement and the surrounding fill, the soil arching decreases which leads to the effect of dynamic loading minimally; and for embankment with a single geogrid, the impact by dynamic loading decreases remarkably when geogrid is set above 10 cm of top of piles compared with geogrid on the top of piles. The PFC simulation results confirm the above conclusion, and further conclud that with the increase of loading frequency and the filling soil height, the decrease of pile net spacing, the effect of dynamic loading increases.

Key words: pile-supported embankments, dynamic load, analysis of particle flow code(PFC2D), pile cap size, reinforcement forms, load frequency, filling height

中图分类号: 

  • TU 473
[1] 杨文波, 邹涛, 涂玖林, 谷笑旭, 刘雨辰, 晏启祥, 何川. 高速列车振动荷载作用下马蹄形断面隧 道动力响应特性分析[J]. 岩土力学, 2019, 40(9): 3635-3644.
[2] 尹 锋, 周 航, 刘汉龙, 楚 剑, . 车辆载重与动荷载对X形桩桩-网复合地基动力 特性影响的试验研究[J]. 岩土力学, 2019, 40(4): 1324-1330.
[3] 包汉营,陈文化,张 谦. 基于薄层法和移动坐标系法的地铁竖向振动在成层土层中传播[J]. , 2018, 39(9): 3277-3284.
[4] 杨文波,陈子全,徐朝阳,晏启祥,何 川,韦 凯, . 盾构隧道与周围土体在列车振动荷载作用下的动力响应特性[J]. , 2018, 39(2): 537-545.
[5] 李瑞山,袁晓铭,李程程. 水平成层场地动剪应变与震动速度关系解析[J]. , 2018, 39(10): 3623-3630.
[6] 何明明,李 宁,陈蕴生,朱才辉. 不同循环加载条件下岩石阻尼比和阻尼系数研究[J]. , 2017, 38(9): 2531-2538.
[7] 袁宗浩,蔡袁强,袁 万,徐芫蕾,曹志刚, . 地铁列车荷载作用下饱和土中圆形衬砌隧道和轨道系统动力响应分析[J]. , 2017, 38(4): 1003-1014.
[8] 朱冰儿,齐昌广,鲍娇蕾. 路堤荷载下塑料套管桩荷载传递机制的现场试验研究[J]. , 2016, 37(S2): 658-664.
[9] 张露晨,李育慧,李树忱,马腾飞,谢 璨. 动荷载作用下隧道围岩块体稳定性分析及其应用[J]. , 2016, 37(11): 3275-3282.
[10] 薛富春 ,张建民 ,  . 移动荷载下高铁路基段振动加速度频谱衰减特性[J]. , 2015, 36(S1): 445-451.
[11] 武 军 ,廖少明 ,霍晓波,. 地铁振动荷载对下穿越盾构开挖面孔隙水压力的影响[J]. , 2015, 36(S1): 496-500.
[12] 黄 强 ,黄宏伟 ,张 锋 ,叶 斌 ,张冬梅 , . 饱和软土层地铁列车运行引起的环境振动研究[J]. , 2015, 36(S1): 563-567.
[13] 赖汉江 ,郑俊杰 ,章荣军 ,张 军 ,崔明娟,. 桩承式路堤土拱形成及荷载传递机制离散元分析[J]. , 2015, 36(S1): 646-650.
[14] 张希栋,骆亚生. 双向动荷载下黄土的动剪切模量特性研究[J]. , 2015, 36(9): 2591-2598.
[15] 周凤玺 ,曹永春 ,赵王刚,. 移动荷载作用下非均匀地基的动力响应分析[J]. , 2015, 36(7): 2027-2033.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 胡大伟,周 辉,谢守益,张 凯,邵建富,冯夏庭. 大理岩破坏阶段Biot系数研究[J]. , 2009, 30(12): 3727 -3732 .
[2] 魏 纲,郭志威,魏新江,陈伟军. 软土隧道盾构出洞灾害的渗流应力耦合分析[J]. , 2010, 31(S1): 383 -387 .
[3] 唐利民. 地基沉降预测模型的正则化算法[J]. , 2010, 31(12): 3945 -3948 .
[4] 刘汉龙,王新泉,陈永辉,陆见华. Y型沉管灌注桩加筋路堤力学性状试验研究[J]. , 2009, 30(2): 297 -304 .
[5] 侯公羽,牛晓松. 基于Levy-Mises本构关系及D-P屈服准则的轴对称圆巷理想弹塑性解[J]. , 2009, 30(6): 1555 -1562 .
[6] 蔡辉腾,危福泉,蔡宗文. 重庆主城区粉质黏土动力特性研究[J]. , 2009, 30(S2): 224 -228 .
[7] 宋 玲 ,刘奉银 ,李 宁 . 旋压入土式静力触探机制研究[J]. , 2011, 32(S1): 787 -0792 .
[8] 周延军 ,耿应春 ,王贵宾 ,唐洪林 ,李祖奎. 深部地层岩石力学性质测试与分析研究[J]. , 2011, 32(6): 1625 -1630 .
[9] 郭文婧 马少鹏 康永军 马沁巍. 基于数字散斑相关方法的虚拟引伸计及其在岩石裂纹动态观测中的应用[J]. , 2011, 32(10): 3196 -3200 .
[10] 张 伟 ,刘泉声. 节理岩体锚杆的综合变形分析[J]. , 2012, 33(4): 1067 -1074 .