›› 2018, Vol. 39 ›› Issue (4): 1289-1301.

• 基础理论与实验研究 • 上一篇    下一篇

平行黏结模型宏细观力学参数相关性研究

阿比尔的1, 2,郑颖人3,冯夏庭2,丛 宇2   

  1. 1. 重庆交通大学 河海学院,重庆 400045;2. 中国科学院武汉岩土力学研究所 岩石力学与工程国家重点实验室,湖北 武汉 430071; 3. 后勤工程学院 建筑工程系,重庆 400041
  • 收稿日期:2016-04-25 出版日期:2018-04-11 发布日期:2018-06-06
  • 通讯作者: 丛宇,男,1984年生,博士,副教授,主要从事岩石卸荷力学与岩爆方面的研究工作。E-mail: cuncin@126.com E-mail:abierdi@163.com
  • 作者简介:阿比尔的,男,1988年生,博士,讲师,主要从事地下隧洞稳定性与数值分析研究方面的工作。
  • 基金资助:

    国家重点基础研究发展计划(No. 2011CB013600,No. 2011CB710606);重庆市自然科学基金(No. cstc2012jjys0001)。

Relationship between particle micro and macro mechanical parameters of parallel-bond model

ABI ERDI1, 2, ZHENG Ying-ren3, FENG Xia-ting2, CONG Yu2   

  1. 1. School of River & Ocean Engineering, Chongqing Jiaotong University, Chongqing 400045, China; 2. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 3. Department of Architectural Engineering, Logistical Engineering University of PLA, Chongqing 400041, China
  • Received:2016-04-25 Online:2018-04-11 Published:2018-06-06
  • Supported by:

    This work was supported by the National Program on Key Basic Research Project of China (2011CB013600, 2011CB710606) and the Natural Science Foundation of Chongqing(cstc2012jjys0001).

摘要: 采用变量控制法较全面地分析了各细观参数与宏观参数的定量关系,表明:弹性模量E随颗粒模量Ec、黏结模量 、平行黏结半径乘子 呈线性增长,随颗粒刚度比kn /ks、黏结刚度比 呈对数减小;泊松比则主要受kn /ks和 的影响,两者之间呈对数关系;颗粒键的黏结强度决定了材料的强度,室内材料黏聚力c和抗拉强度 主要受法向平行黏结强度 、平行黏结强度比 的影响,随 线性增长,随 对数减小;摩擦角 主要受颗粒摩擦系数u影响,两者呈对数关系。分析裂隙扩展特征,表明材料法向黏结强度 和切向黏结强度 的相对大小决定裂纹分布规律,随 增大,岩样的拉破坏区域减少,而压剪破坏区域增加,破坏面由剪切破坏向共轭破坏发展;材料的强度离散性越小,岩样破坏趋于集中,破坏面明显,强度均值标准差比值 >3.5为宜; 增加,宏观破坏形式向共轭破坏发展。细观参数的选取除了匹配强度参数,同时还需要考虑破坏形式的一致,考虑多参数相互影响,建立了宏细观参数之间的经验公式,对细观参数进行优化选择,并做了实例验证。室内试验和数值模拟获得的峰值荷载、变形参数、剪切强度等数值接近,应力-应变演化规律相同,破坏形态一致,表明细观参数结果是可靠的。

关键词: 数值分析, 平行黏结模型, 宏观特性, 细观参数, 相关性

Abstract: Variable control method is used to comprehensively analyze the influence of all the microscopic parameters of parallel bond model on its macroscopic parameters, They are mainly manifested as: Parallel-bond modulus and particle contact modulus Ec are the main controlling factors of macro elastic modulus and there is a linear relationship between them. The Poisson's ratio is mainly affected by the particle stiffness ratio kn /ks and the parallel bond stiffness ratio and there is a logarithmic relationship between them. The bond strength of the particle bond determines the strength properties of the material. The cohesion c and tensile strength of interior materials are mainly influenced by the parallel-bond normal strength and the parallel-bond strength ratio ; they increase linearly with the parallel-bond normal strength and decrease logarithmically with the parallel-bond strength ratio 。 The friction angle is mainly affected by the friction coefficient u of the particles, and the two are in a logarithmic relationship. Analysis of fracture propagation characteristics shows that the relative sizes of the material's normal and tangential bond strengths determine the distribution of cracks. With the increase of parallel-bond strength ratio , the tensile failure area of the rock sample decreases, while the shear zone increases, and the failure surface breaks from the shear failure to conjugate damage. The smaller the dispersion of the strength of the material, the rock sample tends to focus on the destruction, the destruction of the surface is obvious, the ratio between the mean and the standard deviation of the parallel bond strengths more than 3.5 is appropriate; with the increase of parallel-bond stiffness ratio , the macroscopic damage develops to conjugate destruction. In addition to matching the strength parameters, the mesoscopic parameters need to consider the consistency of the failure modes. Considering the mutual influence of multiple parameters, the empirical formulas between the macro and meso parameters are established, the mesoscopic parameters are selected and optimized, and examples are verified. The values of peak loads, deformation parameters and shear strength obtained by indoor tests and numerical simulations are close to each other. The stress-strain evolution law is the same and the damage patterns are the same, indicating that the mesoscopic parameter results are reliable.

Key words: numerical analysis, parallel bond model, macroscopic properties, mesoscopic parameters, correlation

中图分类号: 

  • TU 45

[1] 盛建龙, 韩云飞, 叶祖洋, 程爱平, 黄诗冰, . 粗糙裂隙水、气两相流相对渗透系数模型与数值分析[J]. 岩土力学, 2020, 41(3): 1048-1055.
[2] 刘斯宏, 沈超敏, 毛航宇, 孙 屹. 堆石料状态相关弹塑性本构模型[J]. 岩土力学, 2019, 40(8): 2891-2898.
[3] 朱才辉, 崔 晨, 兰开江, 东永强. 砖-土结构劣化及入侵建筑物拆除 对榆林卫城稳定性影响[J]. 岩土力学, 2019, 40(8): 3153-3166.
[4] 李 宁, 杨 敏, 李国锋. 再论岩土工程有限元方法的应用问题[J]. 岩土力学, 2019, 40(3): 1140-1148.
[5] 郑黎明, 张洋洋, 李子丰, 马平华, 阳鑫军, . 低频波动下考虑孔隙度与压力不同程度变 化的岩土固结渗流分析[J]. 岩土力学, 2019, 40(3): 1158-1168.
[6] 王建军, 陈福全, 李大勇. 低填方加筋路基沉降的Kerr模型解[J]. 岩土力学, 2019, 40(1): 250-259.
[7] 闫澍旺,李 嘉,闫 玥,陈 浩,. 黏性土地基中竖向圆孔的极限稳定深度研究[J]. , 2018, 39(4): 1176-1181.
[8] 霍海峰,雷华阳,冯 兴,王新强,闫晓荣,. 扰动后黏土强度指标与细观参数相关性初探[J]. , 2018, 39(11): 3949-3956.
[9] 郭浩然,乔 兰,李 远. 能源桩与周围土体之间荷载传递模型的改进及其桩身承载特性研究[J]. , 2018, 39(11): 4042-4052.
[10] 李一凡,董世明,潘 鑫,李念斌,原 野. 砂岩的I/III复合型断裂试验研究[J]. , 2018, 39(11): 4063-4070.
[11] 郭 洋,李 清,徐文龙,钱 路,田 策. 条形药包爆破预制贯通裂纹动态断裂过程研究[J]. , 2018, 39(10): 3882-3890.
[12] 刘天翔,王忠福, . 隧道正交穿越深厚滑坡体的相互影响分析与应对措施[J]. , 2018, 39(1): 265-274.
[13] 宋许根,陈从新,夏开宗,陈龙龙,付 华,邓洋洋,杜根明,. 竖井变形破坏机制与继续使用可行性探究[J]. , 2017, 38(S1): 331-342.
[14] 袁艳玲,郭琴琴,周正军,吴震宇,陈建康,姚福海,. 考虑参数相关的高心墙堆石坝材料参数反分析[J]. , 2017, 38(S1): 463-470.
[15] 杨以荣,谢红强,肖明砾,刘建锋,何江达, . 卸荷条件下横观各向同性岩体扩容与能量特性分析[J]. , 2017, 38(6): 1589-1599.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!