›› 2008, Vol. 29 ›› Issue (12): 3186-3192.

• 基础理论与实验研究 • 上一篇    下一篇

移动荷载作用下层状饱和土的动力响应

徐 斌1,3,陆建飞2,王建华1,徐满清3,黎剑华3   

  1. 1. 上海交通大学 土木工程系,上海 200030;2. 江苏大学 土木工程系,江苏 镇江 212013;3. 南昌工程学院 土木工程系,南昌 330029
  • 收稿日期:2007-02-06 出版日期:2008-12-10 发布日期:2013-08-11
  • 作者简介:徐斌,男,1971年生,博士研究生,主要从事饱和土体与基础动力相互作用问题的研究
  • 基金资助:

    国家自然科学基金资项目(No.50578071)。

Dynamic response of layered saturated soil under moving loads

XU Bin1, 3, LU Jian-fei2, WANG Jian-hua1, XU Man-qing3, LI Jian-hua3   

  1. 1. Department of Civil Engineering, Shanghai Jiaotong University, Shanghai 200030, China; 2. Department of Civil Engineering, Jiangsu University, Zhenjiang 212013, China; 3. Department of Civil Engineering, Nanchang Institute of Technology, Nanchang 330029, China
  • Received:2007-02-06 Online:2008-12-10 Published:2013-08-11

摘要: 根据Biot波动理论,采用传递、反射矩阵(TRM)方法研究了移动荷载作用下层状饱和土动力响应问题。由快速Fourier逆变换法(IFFT)得到层状土地基位移、应力及孔压在时间-空间域内的数值解。计算结果与已有文献结果相吻合,验证了算法的正确性。通过算例分析表明:移动荷载作用下含有软弱夹层的层状土体比均质土具有更显著的动力响应,同时会引起土体孔隙水压升高、土体波动性增强;硬夹层时情况则相反。

关键词: 移动荷载, 饱和土, 层状地基, TRM矩阵法, Fourier变换

Abstract: Based on the Biot’s theory, dynamic responses of layered saturated soil under moving loads are studied with the transmission and reflection matrices (TRM) methods. Numerical results of the displacements, the pore pressures and the stresses are obtained by performing inverse Fourier transformation in time-space domain. Some numerical examples and corresponding analysis are presented. The presented methodology is validated by comparing solutions with some known results. According to the analysis, it is concluded that the occurrence of softe interlayer in the layered half space enhances the vertical displacement and pore pressure. Comparing with the homogeneous soil, the response of the multi layered half space tends to contain higher frequency components and exhibits larger magnitude.

Key words: moving loads, saturated soil, layered foundation, TRM method, Fourier transformation

中图分类号: 

  • TU 435
[1] 周凤玺, 高国耀, . 非饱和土中热−湿−盐耦合作用的稳态分析[J]. 岩土力学, 2019, 40(6): 2050-2058.
[2] 汪俊敏, 熊勇林, 杨骐莱, 桑琴扬, 黄强. 不饱和土动弹塑性本构模型研究[J]. 岩土力学, 2019, 40(6): 2323-2331.
[3] 陶高梁, 吴小康, 甘世朝, 肖衡林, 马 强, 罗晨晨, . 不同初始孔隙比下非饱和黏土渗透性 试验研究及模型预测[J]. 岩土力学, 2019, 40(5): 1761-1770.
[4] 丁伯阳, 宋宥整. 饱和土地下源u-P形式解答动力响应计算[J]. 岩土力学, 2019, 40(2): 474-480.
[5] 方瑾瑾, 冯以鑫, 赵伟龙, 王立平, 余永强, . 真三轴条件下原状黄土的非线性本构模型[J]. 岩土力学, 2019, 40(2): 517-528.
[6] 陈正汉, 郭 楠、. 非饱和土与特殊土力学及工程应用研究的新进展[J]. 岩土力学, 2019, 40(1): 1-54.
[7] 杨苏春, 张明义, 王永洪, 桑松魁, 苗德滋. 基于现场试验的闭口静压管桩贯入 层状地基桩端阻力研究[J]. 岩土力学, 2018, 39(S2): 91-99.
[8] 段晓梦,曾立峰, . 非饱和土的承载结构与岩土广义结构性[J]. , 2018, 39(9): 3103-3112.
[9] 包汉营,陈文化,张 谦. 基于薄层法和移动坐标系法的地铁竖向振动在成层土层中传播[J]. , 2018, 39(9): 3277-3284.
[10] 李 宣, 孙德安,张俊然,. 吸力历史对非饱和粉土动力变形特性的影响[J]. , 2018, 39(8): 2829-2836.
[11] 宋 佳,杜修力,许成顺,孙宝印,. 饱和土场地-桩基-地上结构体系的地震响应研究[J]. , 2018, 39(8): 3061-3070.
[12] 徐 筱,赵成刚,蔡国庆,. 区分毛细和吸附作用的非饱和土抗剪强度模型[J]. , 2018, 39(6): 2059-2064.
[13] 陆建飞,周慧明,刘 洋. 横观各向同性层状饱和土动力问题的反射、透射矩阵方法[J]. , 2018, 39(6): 2219-2226.
[14] 韩泽军,林 皋,周小文,杨林青. 横观各向同性层状地基动应力响应的求解与分析[J]. , 2018, 39(6): 2287-2294.
[15] 周亚东,邓 安,鹿 群, . 非饱和土一维大变形固结模型[J]. , 2018, 39(5): 1675-1682.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 马 青,赵均海,魏雪英. 基于统一强度理论的巷道围岩抗力系数研究[J]. , 2009, 30(11): 3393 -3398 .
[2] 谈云志,孔令伟,郭爱国,冯 欣,万 智. 红黏土路基填筑压实度控制指标探讨[J]. , 2010, 31(3): 851 -855 .
[3] 荚颖,唐小微,栾茂田. 砂土液化变形的有限元-无网格耦合方法[J]. , 2010, 31(8): 2643 -2647 .
[4] 胡明鉴,汪 稔,陈中学,王志兵. 泥石流启动过程PFC数值模拟[J]. , 2010, 31(S1): 394 -397 .
[5] 白 冰,李春峰. 地铁列车振动作用下近距离平行隧道的弹塑性动力响应[J]. , 2009, 30(1): 123 -128 .
[6] 李术才,徐帮树,丁万涛,张庆松. 海底隧道最小岩石覆盖厚度的权函数法[J]. , 2009, 30(4): 989 -996 .
[7] 薛云亮,李庶林,林 峰,徐宏斌. 考虑损伤阀值影响的钢纤维混凝土损伤本构模型研究[J]. , 2009, 30(7): 1987 -1992 .
[8] 刘 洋,赵明阶. 基于分形与损伤理论的岩石声–应力相关性理论模型研究[J]. , 2009, 30(S1): 47 -52 .
[9] 崔素丽,张虎元,刘吉胜,梁 健. 混合型缓冲回填材料膨胀变形试验研究[J]. , 2011, 32(3): 684 -691 .
[10] 张军辉. 不同软基处理方式下高速公路加宽工程变形特性分析[J]. , 2011, 32(4): 1216 -1222 .