›› 2014, Vol. 35 ›› Issue (1): 238-247.

• 数值分析 • 上一篇    下一篇

土钉支护结构变形与稳定性关系探讨

张玉成1, 2, 3,杨光华1, 2, 3,吴舒界4,姚丽娜5,钟志辉6   

  1. 1. 广东省水利水电科学研究院,广州 510610;2. 广东省岩土工程技术研究中心,广州 510610;3. 广东省突发公共事件应急技术研究中心,广州 510610;4. 厦门华岩勘测设计有限公司,福建 厦门 361004;5. 华南理工大学 土木与交通学院,广州 510641; 6. 武汉大学 土木建筑工程学院,武汉 430072
  • 收稿日期:2013-02-18 出版日期:2014-01-10 发布日期:2014-01-14
  • 作者简介:张玉成,男,1975年生,博士后,高级工程师,主要从事岩土工程方面的科研、咨询和设计的工作。
  • 基金资助:

    国家自然科学基金(No. 51378131)

Discussion on relationship between deformation and stability of soil nailing structure

ZHANG Yu-cheng1, 2, 3,YANG Guang-hua1, 2, 3,WU Shu-jie4,YAO Li-na5,ZHONG ZHi-hui6   

  1. 1. Guangdong Research Institute of Water Resources and Hydropower, Guangzhou 510610, China; 2. The Geotechnical Engineering Technology Center of Guangdong Province, Guangzhou 510610, China; 3. The Emergency Technology Research Centre of Guangdong Province for Public Events, Guangzhou 510610, China; 4. Xiamen Huayan Reconnaissance & Design Co., Ltd., Xiamen, Fujian 361004, China; 5. School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China; 6. School of Civil and Architectural Engineering, Wuhan University, Wuhan 430072, China
  • Received:2013-02-18 Online:2014-01-10 Published:2014-01-14

摘要: 土钉支护因其施工简单、造价低、工期短和施工技术成熟等优点,在工程中得到广泛应用,但目前其设计计算理论缺乏,且现行规范给出的变形允许值存在不足,如现行土钉规范(规程)仅是简单地规定一个变形允许值,没有结合基坑的特点、支护类型、周边环境等因素来规定,更没有将基坑的变形与基坑稳定联系起来综合确定其监测指标预警值等,因此,导致这种性价比很好的支护技术有减少应用的趋势。利用变模量强度折减法对土钉支护变形和稳定关系进行了探讨性研究,经大量的计算分析,给出了土钉支护的变形与稳定统一判定指标——位高比 ,且计算发现,同一种土质、同一稳定系数K对应的不同高度H的位高比几乎相等。给出了一定强度和一定深度土钉支护位移预警值和最大位移允许值,利用给出的表格,可直接确定其位移预警值和最大位移允许值,便于工程师应用,也为实际土钉支护结构确定变形预警值提供了参考。提出的方法不仅能够确定土钉支护结构变形值,且对类似支护结构确定变形值也提供了一种方法和思路,对推进基坑规范完善和改进具有一定的参考和借鉴作用。

关键词: 基坑, 土钉, 强度折减法, 位高比, 稳定性

Abstract: Because of the advantages such as easy construction, low cost, short construction period and mature construction techniques, soil nailing has been widely used in engineering. However, at present there is lacks of the calculation theory of soil nailing, and shortages also exist in allowable deformation values specified by current specifications. For example, current soil nailing specifications just simply specify an allowable deformation value without considering features of foundation pit, supporting types and surroundings; and these specifications also determine the early warning value for monitoring without combining the deformation with the stability of foundation pits. Thus, these shortages lead to the downward trend of usage of soil nailing that has good performance-price ratio in fact. Based on this, the variable modulus strength reduction method to investigate the relation between deformation and stability of soil nailing is used. After a large number of computational analyses, the comprehensive identification index-deformation-height ratio is given for deformation and stability of soil nailing. It is found from the computational results that for the same soil and the same stability factor k, the deformation-height ratios of different heights H are nearly the same. Also, the early warning displacement and the maximum allowable displacement are proposed for certain strength and depth of soil nailing structure. Using the tables can determine the early warning displacement and the maximum allowable displacement, which is convenient for engineering application. A specific project proves the reasonableness of these results; and these results can also give reference for deformation early warning values of actual soil nailing structure. This paper could not only determine the deformation of soil nailing structure, but also offer a new method and idea to determine deformation of similar supporting structures, which has some significance for improving the specifications of foundation pits.

Key words: foundation pit, soil nailing, strength reduction method, deformation-height ratio, stability

中图分类号: 

  • TU 470
[1] 朱彦鹏, 陶钧, 杨校辉, 彭俊国, 吴强, . 框架预应力锚托板结构加固高填方边坡 设计与数值分析[J]. 岩土力学, 2020, 41(2): 612-623.
[2] 魏纲, 张鑫海, 林心蓓, 华鑫欣, . 基坑开挖引起的旁侧盾构隧道横向受力变化研究[J]. 岩土力学, 2020, 41(2): 635-644.
[3] 李剑, 陈善雄, 余飞, 姜领发, 戴张俊. 预应力锚索加固高陡边坡机制探讨[J]. 岩土力学, 2020, 41(2): 707-713.
[4] 苏永华, 李诚诚. 强降雨下基于Green-Ampt模型的边坡稳定性分析[J]. 岩土力学, 2020, 41(2): 389-398.
[5] 王国辉, 陈文化, 聂庆科, 陈军红, 范晖红, 张川, . 深厚淤泥质土中基坑开挖对基桩 影响的离心模型试验研究[J]. 岩土力学, 2020, 41(2): 399-407.
[6] 郭院成, 李明宇, 张艳伟, . 预应力锚杆复合土钉墙支护体系增量解析方法[J]. 岩土力学, 2019, 40(S1): 253-258.
[7] 刘顺青, 黄献文, 周爱兆, 蔡国军, 姜朋明, . 基于随机块石模型的土石混合边坡稳定性 分析方法研究[J]. 岩土力学, 2019, 40(S1): 350-358.
[8] 丁智, 张霄, 金杰克, 王立忠, . 基坑全过程开挖及邻近地铁隧道变形实测分析[J]. 岩土力学, 2019, 40(S1): 415-423.
[9] 聂秀鹏, 逄焕平, 孙志彬, 谢松梅, 侯超群. 三维加筋边坡地震稳定性上限分析[J]. 岩土力学, 2019, 40(9): 3483-3492.
[10] 朱才辉, 崔 晨, 兰开江, 东永强. 砖-土结构劣化及入侵建筑物拆除 对榆林卫城稳定性影响[J]. 岩土力学, 2019, 40(8): 3153-3166.
[11] 陈冲, 王卫, 吕华永, . 基于复合抗滑桩模型加固边坡稳定性分析[J]. 岩土力学, 2019, 40(8): 3207-3217.
[12] 陈建功, 李 会, 贺自勇, . 基于变分法的均质土坡稳定性分析[J]. 岩土力学, 2019, 40(8): 2931-2937.
[13] 申翃, 李晓, 雷美清, 徐文博, 余秀玲, . 剪力键支护体系的构想及模型试验研究[J]. 岩土力学, 2019, 40(7): 2574-2580.
[14] 蒋泽锋, 张戈, 朱大勇, 王军, . 锚固力作用下的边坡临界滑动场法研究与应用[J]. 岩土力学, 2019, 40(7): 2799-2806.
[15] 王宏磊, 孙志忠, 刘永智, 武贵龙, . 青藏铁路含融化夹层路基热力响应监测分析[J]. 岩土力学, 2019, 40(7): 2815-2824.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 谭贤君,陈卫忠,杨建平,杨春和. 盐岩储气库温度-渗流-应力-损伤耦合模型研究[J]. , 2009, 30(12): 3633 -3641 .
[2] 魏 星,王 刚,余志灵. 交通荷载下软土地基长期沉降的有限元法[J]. , 2010, 31(6): 2011 -2015 .
[3] 温世亿,李静,苏霞,姚雄. 复杂应力条件下围岩破坏的细观特征研究[J]. , 2010, 31(8): 2399 -2406 .
[4] 毛 宁,张尧亮. 经验公式简便求法典型实例[J]. , 2010, 31(9): 2978 -2982 .
[5] 刘 杰,李建林,屈建军,陈 星,李剑武,骆世威. 基于卸荷岩体力学的大岗山坝肩边坡水平位移发育的多因素影响分析[J]. , 2010, 31(11): 3619 -3626 .
[6] 李伟华,赵成刚,杜楠馨. 软弱饱和土夹层对地铁车站地震响应的影响分析[J]. , 2010, 31(12): 3958 -3963 .
[7] 韩现民. 西格二线关角隧道浅埋砂层段施工技术及力学效应研究[J]. , 2010, 31(S2): 297 -302 .
[8] 蒋臻蔚,彭建兵,王启耀. 西安市地铁3号线不良地质问题及对策研究[J]. , 2010, 31(S2): 317 -321 .
[9] 刘用海,朱向荣,常林越. 基于Casagrande法数学分析确定先期固结压力[J]. , 2009, 30(1): 211 -214 .
[10] 祝 磊,洪宝宁. 粉状煤系土的物理力学特性[J]. , 2009, 30(5): 1317 -1322 .