›› 2017, Vol. 38 ›› Issue (11): 3231-3239.doi: 10.16285/j.rsm.2017.11.019

• 基础理论与实验研究 • 上一篇    下一篇

红层软岩遇水崩解特性试验及其界面模型

潘 艺1, 3,刘 镇2, 3,周翠英2, 3   

  1. 1. 中山大学 工学院,广东 广州 510275;2. 中山大学 土木工程学院,广东 广州 510275; 3. 广东省重大基础设施安全工程技术研究中心,广东 广州 510275
  • 收稿日期:2016-12-05 出版日期:2017-11-10 发布日期:2018-06-05
  • 通讯作者: 刘镇,男,1981年生,副教授,博士生导师,主要从事岩土工程的教学与研究工作。E-mail: liuzh8@mail.sysu.edu.cn E-mail:panyi3@mail2.sysu.edu.cn
  • 作者简介:潘艺,女,1988年生,硕士研究生,主要从事岩土工程研究。
  • 基金资助:

    国家自然科学基金重点项目(No. 41530638);国家自然科学基金科学仪器基础研究专项(No. 41227002);国家自然科学基金面上项目 (No. 41372302,No. 41472257);国家重点研发计划专项项目(No. SQ2017YFSF060085)。

Experimental study of disintegration characteristics of red-bed soft rock within water and its interface model

PAN Yi1, 3, LIU Zhen2, 3, ZHOU Cui-ying2, 3   

  1. 1. School of Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, China; 2. School of Civil Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, China; 3. Guangdong Engineering Research Center for Major Infrastructures Safety, Guangzhou, Guangdong 510275, China
  • Received:2016-12-05 Online:2017-11-10 Published:2018-06-05
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (Key Program) (41530638), the Special Foundation for State Major Basic Research Program of China (41530638), the National Natural Science Foundation of China (General Program) (41372302, 41472257) and the National Key Research and Development Program (SQ2017YFSF060085).

摘要: 红层软岩遇水崩解是引发工程灾害的重要原因。红层软岩遇水崩解缘于水作用下软岩细观成分组构的变化,但目前软岩崩解特性定量表征研究多根据宏观现象,所得到的崩解模型难以对软岩崩解的细观过程进行研究。根据室内软岩静态崩解和软岩碎片浸水试验以及不同浸泡阶段的软岩的成分组构扫描电镜观察试验,揭示了水-软岩界面的细观演化规律:红层软岩的崩解机制缘于软岩碎片间泥质填充区中水-岩界面上的黏土颗粒在水作用下发生水化、扩散和流失致使泥质胶结带缩减,从而引起碎片间凝聚力下降;静水作用下软岩碎片间的凝聚力随时间呈幂函数衰减。在此基础上,利用界面与胶体化学、断裂力学理论,定量表征了软岩中水化黏土颗粒的流失以及软岩碎片间的模式Ⅱ型开裂,建立了软岩遇水崩解的界面模型,进而定量表征了软岩遇水崩解过程。通过对比计算,利用上述所建模型计算的软岩碎片剥落时间和试验观察的软岩碎片剥落时间相近,从而验证了模型的合理性。

关键词: 红层软岩, 崩解特性, 水-岩作用, 界面模型

Abstract: Disintegration of soft rock within water is considered as a fatal factor causing the engineering disasters. It is widely accepted that the disintegration results of soft rock from the variation of the microstructure of soft rock within the water. However, only a few studies were carried out to quantitatively describe soft rock disintegration, based on its meso-mechanism. We conducted experiments on the static disintegration of soft rock and immersion tests of soft rock debris in the laboratory. Besides, the compositions of soft rock at different soaking stages were analyzed by scanning electron microscopic as well. Finally, this study revealed the microscopic evolution of the interface between water and soft rock, according to the obtained results. The disintegration mechanism of the red-layer soft rock was generally caused by the hydration, diffusion and loss of clay particles in the water-rock interface in the mud-filled area of the soft rock fragments. Then the related shale cementation was reduced, resulting in the decrease of cohesion between debris. The cohesion between fragments of soft rock decreased exponentially with time under hydrostatic action. On the basis of the above analysis, the loss of hydrated clay particles in soft rock and the cracking type of model Ⅱ between soft rock fragments were quantitatively identified by using the interface and colloid chemistry and fracture mechanics theory. The interfacial model of soft rock with water disintegration was established, and the disintegration process of soft rock was further demonstrated quantitatively. By comparing the obtained results, the flaking time of soft rock fragments calculated by the above model was similar to that observed in the experiment, which verified the rationality of the model.

Key words: red-bed soft rock, disintegration characteristic, water-rock interaction, interface model

中图分类号: 

  • TU 45

[1] 周翠英, 梁宁, 刘镇, . 红层软岩压缩破坏的分形特征与级联失效过程[J]. 岩土力学, 2019, 40(S1): 21-31.
[2] 周翠英, 黄思宇, 刘镇, 陆仪启, . 红层软岩软化的界面过程及其动力学模型[J]. 岩土力学, 2019, 40(8): 3189-3196.
[3] 董建勋, 刘海笑, 李 洲. 适用于砂土循环加载分析的边界面塑性模型[J]. 岩土力学, 2019, 40(2): 684-692.
[4] 陈建功, 陈晓东, . 基于小波函数的锚杆拉拔全过程分析[J]. 岩土力学, 2019, 40(12): 4590-4596.
[5] 高源, 刘海笑, 李洲, . 适用于饱和砂土循环动力分析边界面 塑性模型的显式积分算法[J]. 岩土力学, 2019, 40(10): 3951-3958.
[6] 原鹏博, 杨烜宇, 赵天宇, . 水-盐作用下红层砂岩声波特性劣化试验[J]. 岩土力学, 2019, 40(1): 227-234.
[7] 邓华锋,张恒宾,李建林,王晨玺杰,张吟钗,王 伟,胡亚运. 水-岩作用对砂岩卸荷力学特性及微观结构的影响[J]. , 2018, 39(7): 2344-2352.
[8] 黄明华,赵明华,陈昌富. 锚固长度对锚杆受力影响分析及其临界值计算[J]. , 2018, 39(11): 4033-4041.
[9] 杨 杰,尹振宇,黄宏伟,金银富,张冬梅, . 面向边界面模型的切面算法扩展[J]. , 2017, 38(12): 3436-3444.
[10] 杨召焕 ,王建华 , . 循环荷载作用下饱和软土的各向异性边界面模型[J]. , 2016, 37(S1): 63-71.
[11] 杨 旭,苏定立,周 斌,刘 镇,周翠英,. 红层软岩模型试验相似材料的配比试验研究[J]. , 2016, 37(8): 2231-2237.
[12] 蒋建清 ,杨果林,. 格宾网加筋红层软岩土石混填路堤力学行为的现场测试与数值模拟[J]. , 2016, 37(1): 156-165.
[13] 邱恩喜 ,康景文 ,郑立宁 ,郭永春 ,贺建军,. 成都地区含膏红层软岩溶蚀特性研究[J]. , 2015, 36(S2): 274-280.
[14] 李 剑,陈善雄,姜领发. 循环荷载作用下黏土改进边界面模型[J]. , 2015, 36(2): 387-392.
[15] 邹 炎 ,景立平 ,崔 杰 ,李永强,. 基于Hardin曲线的土体边界面本构模型在ADINA软件中的实现[J]. , 2015, 36(1): 75-82.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!