›› 2018, Vol. 39 ›› Issue (5): 1691-1698.doi: 10.16285/j.rsm.2016.1218

• 基础理论与实验研究 • 上一篇    下一篇

基于矢量和的滑面应力抗滑稳定分析方法

张海涛,罗先启,沈 辉,毕金锋   

  1. 上海交通大学 海洋工程国家重点实验室,上海 200240
  • 收稿日期:2016-05-27 出版日期:2018-05-11 发布日期:2018-06-12
  • 通讯作者: 罗先启,男,1965年生,博士,教授,博士生导师,主要从事岩土力学与工程方面的教学与研究工作。E-mail: luoxianqi@sjtu.edu.cn E-mail: kuanrong9@163.com
  • 作者简介:张海涛,男,1988年生,博士研究生,主要从事陆上及海底边(滑)坡稳定性分析的研究工作。
  • 基金资助:

    国家重点基础研究发展计划(973)资助(No. 2011CB013505);国家自然科学基金资助(No. 51279100)。

Vector-sum-based slip surface stress method for analysing slip mass stability

ZHANG Hai-tao, LUO Xian-qi, SHEN Hui, BI Jin-feng   

  1. State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240
  • Received:2016-05-27 Online:2018-05-11 Published:2018-06-12
  • Supported by:

    This work was supported by the National Program on Key Basic Research Project of China (973 Program) (2011CB013505) and the National Natural Science Foundation of China (51279100).

摘要: 矢量和抗滑稳定分析方法根据真实应力状态定义求解安全系数,物理意义明确,一批学者对其进行了研究。但是当合法向力矢量投影与合剪力矢量投影的符号相反且其绝对值大于合剪力矢量投影时,矢量和法计算出的安全系数可能为负值;另外,目前潜在滑移面上每点极限抗滑剪应力矢量的方向是根据潘家铮最大、最小原理确定的,将其定义为潜在滑移体滑动趋势方向在该点切平面上投影方向的反方向,但是潘家铮最大、最小原理描述的是滑移体力学系统抗滑能力最大,按照矢量和法的定义式,抗滑能力包括抗剪力和法向抗力两部分。基于矢量和思想与以上关于矢量和法的思考,提出一种滑面应力抗滑稳定分析方法,将潜在滑移面视为薄滑移带,以薄滑移带作为对象进行微元受力分析,每个微元的极限抗滑剪应力矢量方向取为该微元剪应力矢量的反向,所有微元的极限抗滑剪力矢量和的反向定义为潜在滑移体滑动趋势方向,最终将极限合抗滑剪力矢量在滑动趋势反方向的投影与合滑动剪力矢量在滑动趋势方向的投影的比值定义为安全系数。较极限平衡法,方法自动满足静力平衡、力矩平衡和变形协调条件,无需受力模式假设;较强度折减法,新方法基于真实应力,物理意义更加明确,安全系数以显式表达,无需迭代;通过经典二维静态边坡考题,验证此方法的可行性;将新方法应用到三维工程实例中,分析潜在滑移体在边坡开挖过程中安全系数的动态演化规律,证明方法的实用性。

关键词: 安全系数, 矢量和, 滑动趋势, 极限抗滑剪应力矢量方向, 稳定性分析

Abstract: The vector sum method (VSM) based on real stress state has been applied recently for analysing the slope stability, considering its clear physical meaning. However, the factor of safety (FoS) defined by VSM could be negative in the case where total normal force vector projection is negative, and its absolute value is larger than total shear force vector projection. Moreover, deduced by Pan’s Principle, the direction of shear resistance stress vector of every point on potential slip surface is currently defined to be opposite to that of the projection of the potential slip direction of the possible slip mass on the tangential surface through this point. However, according to the definition of VSM safety factor and Pan’s Principle, the direction of the projection of the potential slip direction on the tangential surface through this point is opposite to that of the total resistance stresses including shear and normal ones. In this study, a vector-sum-based slip surface stress method for analysing slip mass stability was proposed to overcome these two disadvantages above of VSM. The slip surface was treated as a thin slip band, and forces undertaken by an arbitrary element of the slip band was analysed. The direction of the limit resisting shear stress of an arbitrary element was defined as the opposite direction of the real shear stress, and the possible slip direction was defined as the opposite direction of the resultant limit resisting shear force. Finally, FoS was defined as the ratio of the projection of the limit resisting shear force vector sum in the opposite possible slip direction to that of real dynamic shear force vector sum in the possible slip direction. Compared with the limit equilibrium method, the proposed method satisfied the force and moment equilibrium equations and compatibility conditions without any assumption. Compared with the shear strength reduction method, the proposed method defined that the FoS was explicit form avoiding iteration. The classic two-dimension static slope case was used to verify the proposed method with comparisons among main methods for slope stability analysis, which indicated that the proposed method was feasible. Additionally, the proposed method was applied to a three-dimensional engineering case to study its stability during the excavation process, which showed the proposed method could be used for practical application.

Key words: safety factor, vector sum, potential slip direction, limiting shear resistance stress vector, stability analysis

中图分类号: 

  • TU 431

[1] 周强, 黎康平, 段亚辉, 曹子君, 李典庆, . 基于广义可靠指标相对安全率的地基承载力 安全判据研究[J]. 岩土力学, 2020, 41(6): 2052-2062.
[2] 肖明清, 徐晨, . 基于临界稳定断面的隧道围岩稳定性分析方法探讨[J]. 岩土力学, 2020, 41(5): 1690-1698.
[3] 刘一扬, 宋选民, 朱德福, 李竹. 大块度关键块动态结构力学行为及响应特征研究[J]. 岩土力学, 2020, 41(3): 1019-1028.
[4] 王伟, 陈国庆, 郑水全, 张广泽, 王栋, . 考虑张拉-剪切渐进破坏的边坡矢量和法研究[J]. 岩土力学, 2019, 40(S1): 468-476.
[5] 聂秀鹏, 逄焕平, 孙志彬, 谢松梅, 侯超群. 三维加筋边坡地震稳定性上限分析[J]. 岩土力学, 2019, 40(9): 3483-3492.
[6] 陈建功, 李 会, 贺自勇, . 基于变分法的均质土坡稳定性分析[J]. 岩土力学, 2019, 40(8): 2931-2937.
[7] 张海娜, 陈从新, 郑 允, 孙朝燚, 张亚鹏, 刘秀敏, . 坡顶荷载作用下岩质边坡弯曲倾倒破坏分析[J]. 岩土力学, 2019, 40(8): 2938-2946.
[8] 陈峥, 何平, 颜杜民, 高红杰, 聂奥祥, . 超前支护下隧道掌子面稳定性极限上限分析[J]. 岩土力学, 2019, 40(6): 2154-2162.
[9] 吴关叶, 郑惠峰, 徐建荣. 三维复杂块体系统边坡深层加固条件下稳定性及 破坏机制模型试验研究[J]. 岩土力学, 2019, 40(6): 2369-2378.
[10] 张龙飞, 吴益平, 苗发盛, 李麟玮, 康田. 推移式缓倾浅层滑坡渐进破坏力学模型 与稳定性分析[J]. 岩土力学, 2019, 40(12): 4767-4776.
[11] 任晋岚, 陈曦, 王冬勇, 吕彦楠. 基于广义Hoek-Brown准则的瞬时线性化 强度折减技术[J]. 岩土力学, 2019, 40(12): 4865-4872.
[12] 李典庆, 周强, 曹子君, . 基于广义可靠指标相对安全率的岩土工程 设计安全判据[J]. 岩土力学, 2019, 40(10): 3977-3986.
[13] 尹小涛,薛海斌,汤 华,任兴文,宋 罡,. 边坡局部和整体稳定性评价方法的辩证统一[J]. , 2018, 39(S1): 98-104.
[14] 尹小涛,严 飞,秦雨樵,周 磊,王东英, . 地震作用下华丽高速公路金沙江桥华坪岸顺层边坡动力稳定性评价[J]. , 2018, 39(S1): 387-394.
[15] 代仲海,胡再强,尹小涛,吴振君,. 工程荷载作用下缓倾角反倾似层状岩质边坡变形稳定性分析[J]. , 2018, 39(S1): 412-418.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!