岩土力学 ›› 2021, Vol. 42 ›› Issue (9): 2437-2448.doi: 10.16285/j.rsm.2020.1784

• 基础理论与实验研究 • 上一篇    下一篇

水力耦合作用下非饱和压实黄土 细观变形机制试验研究

葛苗苗1, 2,李宁2,盛岱超3,朱才辉2,PINEDA Jubert4   

  1. 1. 温州大学 建筑工程学院,浙江 温州 325035;2. 西安理工大学 岩土工程研究所,陕西 西安 710048; 3. 悉尼科技大学 土木环境系,悉尼,澳大利亚;4. 纽卡斯尔大学 土木工程系,纽卡斯尔,澳大利亚
  • 收稿日期:2020-11-28 修回日期:2021-04-22 出版日期:2021-09-10 发布日期:2021-08-30
  • 通讯作者: 李宁,男,1959年生,博士,教授,主要从事岩体动力学特性的试验研究与裂隙动力学数值仿真模型分析、寒区冻土力学与工程研究的教学和科研工作。E-mail: ningli@xaut.edu.cn E-mail:gemiaomiao163@163.com
  • 作者简介:葛苗苗,女,1988年生,博士,讲师,主要从事非饱和土水力耦合特性及细观结构试验研究。
  • 基金资助:
    国家自然科学基金项目(No.52008317);陕省岩土与地下空间工程重点实验室开放基金项目(No.YT202006)。

Experimental investigation of microscopic deformation mechanism of unsaturated compacted loess under hydraulic coupling conditions

GE Miao-miao1, 2, LI Ning2, SHENG Dai-chao3, ZHU Cai-hui2, PINEDA Jubert4   

  1. 1. College of Civil Engineering and Architecture, Wenzhou University, Wenzhou, Zhejiang 325035, China; 2. Institute of Geotechnical Engineering, Xi’an University of Technology, Xi’an, Shaanxi 710048, China; 3. University of Technology Sydney, Sydney, Australia; 4. The University of Newcastle, Newcastle, Australia
  • Received:2020-11-28 Revised:2021-04-22 Online:2021-09-10 Published:2021-08-30
  • Supported by:
    This work was supported by the National Nature Science Foundation of China(52008317) and the Open Fund Projects of Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering(YT202006).

摘要: 对两种状态的压实黄土进行了一维常含水率压缩试验及常应力增湿试验,结合压汞法及扫描电镜等细观结构研究手段,对压缩以及增湿作用下压实黄土的细观结构演化进行分析,进一步对压实黄土在水力耦合作用下的细观变形机制进行探讨。研究结果表明:常含水率压缩下,压实黄土饱和度增大,可以在进一步压缩下发展为饱和土的固结过程;细观层面上非饱和压实黄土的压缩是其大孔隙在应力作用下塌陷减少的结果,而小孔隙分布在压缩中不受影响;常竖向应力下增湿,压实黄土的湿化变形随着竖向应力的增大呈现先增大后减小的趋势,最大湿化应变发生在压实应力附近。细观层面上,湿化作用下,颗粒及团聚体之间的黏结弱化,发生崩塌滑移,大孔隙塌陷减小而小孔隙增多,湿化后土体结构趋于均匀稳定。而压实黄土的蠕变也是在恒定荷载作用下土颗粒或团聚体的蠕滑、大孔隙进一步压缩引起的。结合研究结果,进一步从细观角度对黄土高填方施工期及工后期沉降进行总结阐述。

关键词: 压实黄土, 一维压缩及增湿试验, 细观试验, 孔隙分布, 湿化变形

Abstract: In this paper, a large number of one-dimensional tests, including constant water content compression and soaking under constant stress, are conducted. The microstructure evolution and deformation mechanism of the compacted loess under loading and wetting conditions are investigated with mercury intrusion porosimetry (MIP) and scanning electron microscope (SEM) analysis. Experimental results show that, as the saturation of compacted loess increases at a constant moisture content, it will develop into a saturated consolidation process under further compression. At the microscopic level, the compression of the unsaturated compacted loess results from the collapse reduction of its macrospores, while the distribution of microspores is unaffected in compression. During increasing wetting under the constant vertical stress, the wetting deformation of compacted loess shows a trend of increasing and then decreasing with the increase of vertical stress, and the maximum wetting strain occurs near the compaction stress. Under wetting conditions, the bonds between particles and aggregations are weakened, and the particles and agglomerates collapse and slip, resulting in the reduction of macrospores and the increase of microspores. Also, the soil structure tends to be more uniform and stable after wetting. The creep of compacted loess is caused by the further slippage of particles under constant load and further compression of macrospores. In addition, the settlement law of compacted loess fill is summarized from the construction and post-construction period according to testing results.

Key words: compacted loess, one-dimensional compression and wetting test, microstructure analysis, pore size distribution, deformation upon wetting

中图分类号: 

  • TU411
[1] 李燕, 李同录, 侯晓坤, 李华, 张杰, . 用孔隙分布曲线预测压实黄土非饱和渗透曲 线及其适用范围的探讨[J]. 岩土力学, 2021, 42(9): 2395-2404.
[2] 郝延周, 王铁行, 程磊, 金鑫, . 考虑干湿循环影响的压实黄土结构性本构关系[J]. 岩土力学, 2021, 42(11): 2977-2986.
[3] 牛庚, 邵龙潭, 孙德安, 韦昌富, 郭晓霞, 徐华. 土−水特征曲线测量过程中孔隙分布的演化规律探讨[J]. 岩土力学, 2020, 41(4): 1195-1202.
[4] 介玉新, 张延亿, 杨光华, . 土石料湿化变形计算方法探讨[J]. 岩土力学, 2019, 40(S1): 11-20.
[5] 谈云志, 彭帆, 钱芳红, 孙德安, 明华军, . 石墨−膨润土缓冲材料的最优配置方法[J]. 岩土力学, 2019, 40(9): 3387-3396.
[6] 丁艳辉, 张丙印, 钱晓翔, 殷 殷, 孙 逊. 堆石料湿化变形特性试验研究[J]. 岩土力学, 2019, 40(8): 2975-2981.
[7] 付宏渊, 刘 杰, 曾 铃, 卞汉兵, 史振宁, . 考虑荷载与浸水条件的预崩解炭质泥岩 变形与强度试验[J]. 岩土力学, 2019, 40(4): 1273-1280.
[8] 王娟娟, 郝延周, 王铁行. 非饱和压实黄土结构特性试验研究[J]. 岩土力学, 2019, 40(4): 1351-1357.
[9] 魏 星, 张 昭, 王 刚, 张建民, . 饱和砂土液化后大变形机制的离散元细观分析[J]. 岩土力学, 2019, 40(4): 1596-1602.
[10] 张善凯, 冷先伦, 盛谦, 李彪, 周永强, . 卢氏膨胀岩在干湿循环作用下的胀缩特性研究[J]. 岩土力学, 2019, 40(11): 4279-4288.
[11] 高远, 于永堂, 郑建国, 梁谊, . 压实黄土在溶滤作用下的强度特性[J]. 岩土力学, 2019, 40(10): 3833-3843.
[12] 冯上鑫,柴军瑞,许增光,覃 源,陈 玺. 基于核磁共振技术研究渗流作用下土石混体细观结构的变化[J]. , 2018, 39(8): 2886-2894.
[13] 牛 庚,孙德安,韦昌富,颜荣涛,. 基于孔径分布的全风化泥岩持水曲线推算[J]. , 2018, 39(4): 1337-1345.
[14] 黄启迪,蔡国庆,赵成刚, . 非饱和土干化过程微观结构演化规律研究[J]. , 2017, 38(1): 165-173.
[15] 谈云志,胡莫珍,周玮韬,左清军,汪洪星,喻 波, . 荷载-干湿循环共同作用下泥岩的压缩特性[J]. , 2016, 37(8): 2165-2171.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .