岩土力学 ›› 2022, Vol. 43 ›› Issue (5): 1374-1382.doi: 10.16285/j.rsm.2021.1420

• 数值分析 • 上一篇    下一篇

考虑结构性黏土应变软化效应的 桩靴竖向承载特性研究

焦钰祺1,贺林林1, 2, 3,梁越1, 2, 3,刘旭菲4   

  1. 1. 重庆交通大学 河海学院,重庆 400074;2. 重庆交通大学 国家内河航道整治工程技术研究中心,重庆 400074; 3. 重庆交通大学 水利水运工程教育部重点实验室,重庆 400074;4. 浙江水利水电学院 水利与环境工程学院,浙江 杭州 310018
  • 收稿日期:2021-08-23 修回日期:2022-01-18 出版日期:2022-05-11 发布日期:2022-05-02
  • 通讯作者: 贺林林,女,1983年生,博士,副教授,主要从事港口海岸及近海工程结构设计理论及方法、土与结构相互作用研究工作。 E-mail: helinl@126.com E-mail:jiaoyuqi1031@163.com
  • 作者简介:焦钰祺,女,1996年生,硕士研究生,主要从事港口海岸及近海工程结构设计理论及方法研究工作。
  • 基金资助:
    国家自然科学基金(No. 51709138);重庆市基础与前沿研究科学基金(No. cstc2018jcyjAX0559);天津市自然科学基金(No. 16JCQNJC07300);重庆市博士后科研项目特别资助项目(No. Xm2017188)。

Study of vertical bearing capacity of spudcan foundations considering strain-softening effect of structured clay

JIAO Yu-qi1, HE Lin-lin1, 2, 3, LIANG Yue1, 2, 3, LIU Xu-fei4   

  1. 1. Hohai College, Chongqing Jiaotong University, Chongqing 400074, China; 2. National Engineering Research Center for Inland River Channel Regulation, Chongqing Jiaotong University, Chongqing 400074, China; 3. Key Laboratory of Education Ministry of Water Conservancy and Water Transportation Engineering, Chongqing Jiaotong University, Chongqing 400074, China; 4. Hydraulic and Environment Engineering College, Zhejiang University of Water Resources and Electric Power, Hangzhou, Zhejiang 310018, China
  • Received:2021-08-23 Revised:2022-01-18 Online:2022-05-11 Published:2022-05-02
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51709138), the Basic and Frontier Research Science Foundation of Chongqing (cstc2018jcyjAX0559), the Tianjin Natural Science Foundation (16JCQNJC07300) and the Postdoctoral Research Project of Chongqing) (Xm2017188).

摘要: 为评估桩靴在结构性较强的黏土场地贯入时,土体的应变软化效应对桩靴竖向承载特性的影响,首先采用VUSDFLD子程序定义结构性黏土不排水抗剪强度 随累积绝对塑性剪应变 的变化关系,使现行的耦合欧拉-拉格朗日(coupled Eulerian-Lagrangian,简称CEL)数值分析方法能够模拟结构性黏土的应变软化效应。然后,基于改进后的CEL数值分析方法,分析土体灵敏度 、土体应变软化参数 及土体脆性参数 对桩靴上方土体回流及竖向承载特性的影响。结果表明: 、 及 均会对桩靴上方土体回流及桩靴竖向承载力产生影响,其中反映结构性黏土脆性特性的参数 影响最显著。与未考虑土体应变软化效应的情况相比,考虑结构性黏土应变软化效应的桩靴竖向承载力因子和极限孔穴高度明显偏低。此外,建立了桩靴在结构性较强的海洋黏土场地预压贯入时的归一化极限孔穴高度及桩靴深贯入竖向承载力预测公式,预测结果较合理。研究成果也可为实际工程中评估桩靴深贯入竖向承载力、预测桩靴最终贯入深度提供参考。

关键词: 结构性黏土, 应变软化效应, 极限孔穴高度, 竖向承载力, 耦合欧拉-拉格朗日方法

Abstract: To evaluate the effect of the strain-softening of structured clays on the vertical bearing capacity of the spudcan foundations, firstly, the VUSDFLD subroutine was used to define the relationship between the undrained shear strength and accumulated absolute plastic shear strain , so that the coupled Eulerian-Lagrangian (CEL) numerical analysis method can simulate the strain-softening effect of structured clays. Then, based on the improved CEL numerical analysis method, the effects of soil sensitivity , soil strain-softening parameter , and soil brittleness parameter on the soil backflow above the spudcan as well as on the vertical bearing characteristics of spudcan foundations were analyzed. The results show that soil sensitivity , soil strain-softening parameter and soil brittleness parameter all have impacts on the soil backflow and on the vertical bearing capacity of spudcans, in which the effect of the brittleness parameter is most significant. Also, compared with the situation without considering the strain-softening effect, the bearing capacity factor of spudcan foundations and limiting cavity depth considering the strain-softening effect of structured clay are dramatically lower. Finally, the prediction expressions of the normalized limiting cavity height and vertical bearing capacity of spudcan foundations in structured marine clay were established, and the prediction results are reasonable. The research results of this paper can be used to assess the bearing capacity and penetration depth of spudcan foundations in practical engineering.

Key words: structured clay, strain-softening effect, limiting cavity height, vertical bearing capacity, coupled Eulerian-Lagrangian method

中图分类号: 

  • TU 473
[1] 赵盛男, 霍玉龙, 汤斌. 湛江组结构性黏土触变性正交试验及其触变强度预测模型[J]. 岩土力学, 2023, 44(S1): 197-205.
[2] 安然, 孔令伟, 师文卓, 郭爱国, 张先伟, . 结构性黏土的原位刚度衰减规律及数学表征[J]. 岩土力学, 2022, 43(S1): 410-418.
[3] 舒荣军, 孔令伟, 师文卓, 刘炳恒, 黎澄生, . 湛江结构性黏土自钻旁压试验的加载速率效应[J]. 岩土力学, 2021, 42(6): 1557-1567.
[4] 万志辉, 戴国亮, 高鲁超, 龚维明, . 大直径后压浆灌注桩承载力和沉降的 实用计算方法研究[J]. 岩土力学, 2020, 41(8): 2746-2755.
[5] 朱楠, 刘春原, 赵献辉, 王文静, . 不同应力路径下K0固结结构性黏土 微观结构特征试验研究[J]. 岩土力学, 2020, 41(6): 1899-1910.
[6] 袁维, 刘尚各, 聂庆科, 王伟, . 基于冲切破坏模式的嵌岩桩桩端溶洞顶板 临界厚度确定方法研究[J]. 岩土力学, 2019, 40(7): 2789-2798.
[7] 任连伟,顾红伟,彭怀风,周 杨,. 三种工况下扩底楔形桩承载特性模型试验研究[J]. , 2017, 38(7): 1887-1893.
[8] 臧 濛,孔令伟,郭爱国. 静偏应力下湛江结构性黏土的动力特性[J]. , 2017, 38(1): 33-40.
[9] 闫澍旺,林 澍,霍知亮,楚 剑,郭 伟,. 桶形基础液压下沉过程的耦合欧拉-拉格朗日有限元法分析[J]. , 2017, 38(1): 247-252.
[10] 王建华,兰 斐 , . 钻井船插桩对邻近桩影响的耦合欧拉-拉格朗日有限元方法研究[J]. , 2016, 37(4): 1127-1136.
[11] 苏世定,杨仲轩,郭望波. 黏土中打入桩竖向承载力计算方法效果评价[J]. , 2015, 36(S2): 389-393.
[12] 李 阳,张 嘎. 粉质黏土中单桩竖向承载力的离心模型试验研究[J]. , 2014, 35(S2): 180-184.
[13] 张先伟 ,孔令伟 ,郭爱国 ,拓勇飞,. 不同固结压力下强结构性黏土孔隙分布试验研究[J]. , 2014, 35(10): 2794-2800.
[14] 刘 莹 ,黄茂松 ,李 帅 . 海上风电桩基础竖向承载力循环弱化简化分析[J]. , 2013, 34(9): 2655-2660.
[15] 沈建华 ,汪 稔 ,郑 郧 ,韩健庄 ,陈晓东 . 湛江组结构性黏土区域微观结构特性研究[J]. , 2013, 34(7): 1931-1936.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 黄建华,宋二祥. 大型锚碇基础围护工程冻结帷幕力学性态研究[J]. , 2009, 30(11): 3372 -3378 .
[2] 王观石,李长洪,陈保君,李世海. 应力波在非线性结构面介质中的传播规律[J]. , 2009, 30(12): 3747 -3752 .
[3] 王朝阳,许 强,倪万魁. 原状黄土CT试验中应力-应变关系的研究[J]. , 2010, 31(2): 387 -391 .
[4] 邓 琴,郭明伟,李春光,葛修润. 基于边界元法的边坡矢量和稳定分析[J]. , 2010, 31(6): 1971 -1976 .
[5] 闫 铁,李 玮,毕雪亮. 基于分形方法的多孔介质有效应力模型研究[J]. , 2010, 31(8): 2625 -2629 .
[6] 刘 嘉,王 栋. 正常固结黏土中平板锚基础的吸力和抗拉力[J]. , 2009, 30(3): 735 -740 .
[7] 赵尚毅,郑颖人,李安洪,邱文平,唐晓松,徐 俊. 多排埋入式抗滑桩在武隆县政府滑坡中的应用[J]. , 2009, 30(S1): 160 -164 .
[8] 刘振平,贺怀建,朱发华. 基于钻孔数据的三维可视化快速建模技术的研究[J]. , 2009, 30(S1): 260 -266 .
[9] 魏厚振,颜荣涛,韦昌富,吴二林,陈 盼,田慧会. 含天然气水合物沉积物相平衡问题研究综述[J]. , 2011, 32(8): 2287 -2294 .
[10] 王国粹,杨 敏. 砂土中水平受荷桩非线性分析[J]. , 2011, 32(S2): 261 -267 .