岩土力学 ›› 2021, Vol. 42 ›› Issue (6): 1557-1567.doi: 10.16285/j.rsm.2020.1502
舒荣军1, 2,孔令伟1, 2,师文卓1, 2,刘炳恒1, 2,黎澄生1, 2
SHU Rong-jun1, 2, KONG Ling-wei1, 2, SHI Wen-zhuo1, 2, LIU Bing-heng1, 2, LI Cheng-sheng1, 2
摘要: 作为一种具有高结构屈服强度的灵敏性黏土,湛江黏土力学性质的加载速率效应值得关注。为了研究湛江黏土原位力学性质的加载速率效应,开展了不同加载速率的自钻旁压试验,分析应力速率对湛江黏土原位不排水抗剪强度、线性刚度以及剪切模量非线性衰减特性的影响。结果表明:应力速率越大,不排水抗剪强度就越大,二者之间具有良好的线性关系,这一变化关系不同于文献中控制应变速率的研究结果;线性割线剪切模量Gur随应力速率的增大而增大,经相应速率下Gur归一化后的不排水抗剪强度落于较窄的数值区间内,表明应力速率对峰值强度对应的应变影响很小;加载速率越大,切线剪切模量Gt衰减幅度越大、衰减越迅速、Gt-γ衰减曲线越陡,但对于各应力速率,Gt均约在γ = 0.1%时衰减至小于Gur;加载速率影响了各应变区间内Gt的衰减幅度和速度,加载速率越小,衰减集中发生于越低的应变水平。研究指出湛江黏土特殊的微观结构是控制其力学性质加载速率效应的主导因素,并通过开展原状土样和重塑土样的室内超微型贯入试验予以初步印证。认为应当重视土体原位力学性质的加载速率效应,同时关注加载速率历史对土体蠕变性质的影响。
中图分类号:
[1] | 安然, 孔令伟, 师文卓, 郭爱国, 张先伟, . 结构性黏土的原位刚度衰减规律及数学表征[J]. 岩土力学, 2022, 43(S1): 410-418. |
[2] | 焦钰祺, 贺林林, 梁越, 刘旭菲, . 考虑结构性黏土应变软化效应的 桩靴竖向承载特性研究[J]. 岩土力学, 2022, 43(5): 1374-1382. |
[3] | 王斌, 韩幽铭, 周欣, 陈成, 张先伟, 桂蕾, . 太湖湖相黏土层剪切模量衰减特性的 原位测试研究[J]. 岩土力学, 2021, 42(7): 2031-2040. |
[4] | 周跃峰, 杨哲, 饶锡保, 肖国强, 周黎明. 不同含水率下黏土弹性参数的 弯曲−伸展元试验研究[J]. 岩土力学, 2020, 41(S1): 387-393. |
[5] | 朱楠, 刘春原, 赵献辉, 王文静, . 不同应力路径下K0固结结构性黏土 微观结构特征试验研究[J]. 岩土力学, 2020, 41(6): 1899-1910. |
[6] | 梁珂, 陈国兴, 杭天柱, 刘抗, 何杨, . 砂类土最大动剪切模量的新预测模型[J]. 岩土力学, 2020, 41(6): 1963-1970. |
[7] | 梁珂, 陈国兴, 刘抗, 王彦臻, . 饱和珊瑚砂最大动剪切模量的 循环加载衰退特性及预测模型[J]. 岩土力学, 2020, 41(2): 601-611. |
[8] | 彭守建, 冉晓梦, 许江, 陈灿灿, 宋肖徵, 闫发志, . 基于3D-DIC技术的砂岩变形局部化 荷载速率效应试验研究[J]. 岩土力学, 2020, 41(11): 3591-3603. |
[9] | 吴琪, 刘抗, 郭启洲, 赵凯, 陈国兴, . 基于二元介质模型的砂类土 小应变剪切模量评价方法[J]. 岩土力学, 2020, 41(11): 3641-3650. |
[10] | 梁珂, 何杨, 陈国兴, . 南沙珊瑚砂的动剪切模量和阻尼比特性试验研究[J]. 岩土力学, 2020, 41(1): 23-31. |
[11] | 杨文保, 吴琪, 陈国兴, . 长江入海口原状土动剪切模量预测方法探究[J]. 岩土力学, 2019, 40(10): 3889-3896. |
[12] | 彭守建, 王 哲, 许 江, 大久保诚介, 汤 杨, . 三轴压缩条件下饱水岩石破坏后区荷载 速率效应试验研究[J]. 岩土力学, 2018, 39(S2): 72-82. |
[13] | 盛云锋, 陈 远, 周 伟, 马 刚, 常晓林, . 基于改进动剪切模量模型的堆石坝动力响应分析[J]. 岩土力学, 2018, 39(S2): 405-414. |
[14] | 张 炜,李 亚,周松望,蒋正波,吴 非,梁文洲,. 南海北部区域黏土循环动力特性试验研究[J]. , 2018, 39(7): 2413-2423. |
[15] | 孔纲强,李 辉,王忠涛,文 磊,. 透明砂土与天然砂土动力特性对比[J]. , 2018, 39(6): 1935-1940. |
|